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Quark-Hadron
(“Bloom-Gilman”) duality



Quark-hadron duality

Complementarity between quark and 
hadron descriptions of observables

∑

hadrons

=

∑

quarks

Can use either set of complete basis states
to describe all physical phenomena
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Fig. 9. Early proton !W2 structure function data in the resonance region, as a function of "′, compared to a smooth fit to the
data in the scaling region at largerQ2. The resonance data were obtained at the indicated kinematics, withQ2 in GeV2, for the

longitudinal to transverse ratio R = 0.18. (Adapted from Ref. [3].)

perturbative QCD (as will be discussed in Section 4). Nevertheless, the astute observations made by

Bloom and Gilman are still valid, and may be summarized as follows:

I. The resonance region data oscillate around the scaling curve.

II. The resonance data are on average equivalent to the scaling curve.

III. The resonance region data “slide” along the deep inelastic curve with increasingQ2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the resonances are

not a separate entity but are an intrinsic part of the scaling behavior of !W2” [2].

In order to quantify these observations, Bloom and Gilman drew on the work on duality in hadronic

reactions to determine a FESR equating the integral over ! of !W2 in the resonance region, to the integral

over "′ of the scaling function [2],

2M

Q2

∫ !m

0

d! !W2(!, Q
2) =

∫ 1+W 2
m/Q2

1

d"′!W2("
′) . (63)

Here the upper limit on the ! integration, !m = (W 2
m −M2+Q2)/2M , corresponds to the maximum value

of "′ = 1 + W 2
m/Q2, where Wm ∼ 2GeV, so that the integral of the scaling function covers the same

range in "′ as the resonance region data. FESR (63) allows the area under the resonances in Fig. 9 to
be compared to the area under the smooth curve in the same "′ region to determine the degree to which
the resonance and scaling data are equivalent. A comparison of both sides in Eq. (63) for Wm = 2GeV

showed that the relative differences ranged from∼ 10%atQ2=1GeV2, to!2%beyondQ2=2GeV2 [3],
thus demonstrating the near equivalence on average of the resonance and deep inelastic regimes (point II

above). Using this approach, Bloom andGilman’s quark–hadron duality was able to qualitatively describe

the data in the range 1!Q2!10GeV2.

scaling curve

resonance - scaling duality in
proton                 structure function νW2 = F2

Electron scattering



Bloom-Gilman duality

Average over (strongly Q  dependent) resonances 
     Q   independent scaling function2

2

≈

Finite energy sum rule for eN scattering

2M

Q2

∫
νm

0

dν νW2(ν, Q2) =

∫
ω

′

m

1

dω′ νW2(ω
′)

measured structure function
(function of    and     )ν Q2

“hadrons” ω′
=

1

x
+

M2

Q2

scaling function
(function of      only)ω

′

“quarks”



Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

Bloom-Gilman duality

2

Average over
(strongly Q   dependent)
resonances 
     Q   independent
     scaling function

2

≈

Jefferson Lab (Hall C)



Scaling variables

ξ =
2x

1 +
√

1 + 4x2M2/Q2

Nachtmann scaling variable

p+q
q

p

P

→ x as Q2
→ ∞

mq = 0

pT = 0
(p + q)2 = m

2

q {

ξ =
p+

P+
=

p0 + pz

M

light-cone fraction of target’s momentum carried by parton



Scaling variables

A Review of Target Mass Corrections 6

Figure 2. The Nachtmann variable ξ as a function of the Bjorken scaling variable x,
for Q2 = 1, 2, 4 and 10 GeV2. is it possible to insert the diagonal as
dotted line?

At large values of Q2, ξ ∼ x. As Fig. 2 shows, however, for Q2 less than a few times the

target mass of ∼ 1 GeV, ξ can deviate significantly from x, especially at large x values.

The Nachtmann variable appears naturally in the OPE, as we outline below. The full
details of the notation, including parton masses, appear in Appendix A.

We can write any generic DIS cross section as a combination of a hadronic tensor

Wµν and a leptonic tensor Lµν :

dσ ∼ Wµν Lµν ,

where the hadronic tensor is given in terms of a product of hadronic currents,‖

Wµν ≡
1

2π

∫
d4z eiq·z 〈N |[Jµ(z), Jν(0)]|N〉

= − gµνW1 +
pµpν

M2
W2 − iεµνρσ

pρqσ

M2
W3

+
qµqν

M2
W4 +

pµqν + pνqµ

M2
W5 . (3)

The structure functions Wi depend on x and Q2, as well as the target mass M . The
hadronic tensor can be related to the discontinuity of the virtual forward Compton

scattering amplitude Tµν via

Wµν =
1

π
disc Tµν . (4)

‖ In this work, we will focus on the unpolarized results. For TMC effects on the polarized structure
function see Refs. [43–45], and references therein.



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD

τ

matrix elements of operators with 
specific “twist”

τ = dimension − spin



Higher twists

(a) (b) (c)

τ = 2

single quark
scattering

τ > 2

qq and qg
correlations



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

     

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

If moment      independent of Q≈
2

higher twist terms            smallA
(τ>2)
n

Duality in QCD



Mn(Q2) =

∫ 1

0

dx xn−2 F2(x, Q2)

= A(2)
n

+
A

(4)
n

Q2
+

A
(6)
n

Q4
+ · · ·

     

de Rujula, Georgi, Politzer,
Ann. Phys. 103 (1975) 315

Duality ⇐⇒ suppression of higher twists

Operator product expansion

expand moments of structure functions
in powers of 1/Q2

Duality in QCD



Local Duality               
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

∆

S11

Local Bloom-Gilman duality



contribution of (narrow) resonance R to structure function

Local Bloom-Gilman duality

F
(R)
2 ≈ 2Mν

(
GR(Q2)

)2
δ(W 2

− M2
R)

as  Q2
→ ∞ , xR → 1

resonances move to larger x

if GR(Q2) ∼ (1/Q2)n then for  Q2
! M2

R

F
(R)
2 ≈ (1 − xR)2n−1

with 
xR =

Q2

Q2 + M2

R
− M2

“Drell-Yan-West relation”



extreme case of local duality for elastic peak

Local elastic duality

elastic contribution to structure function

F (el)
2 =

2Mτ

1 + τ

(
G2

E + τG2
M

)2
δ(ν − Q2/2M) τ =

Q2

4M2

hypothesis:  area under elastic peak same as integral of
                  scaling structure function below threshold

ω′
=

2Mν + M2

Q2

Bloom-Gilman
scaling variable

∫ δω
′

1
dω′ FLT

2 (ω′) =
2M

Q2

∫
dν F

(el)
2 (ν, Q2)

=
G2

E
+ τG2

M

1 + τ



Local elastic duality

extract magnetic form factor from integral of F2

0 1 2 3 4 5
0

1

2

3

Q
2 2

(GeV )

G
Mp

global fit

duality extraction

Q2 (GeV2)

good to ~ 30% for      ~ few GeVQ2 2



Local elastic duality

conversely,  differentiate local duality relation w.r.t. 
to obtain structure function at threshold

Q2

F2(x = xth) = β

[
G2

M
− G2

E

2M2(1 + τ)2
+

2

1 + τ

(
dG2

E

dQ2
+ τ

dG2
M

dQ2

)]

β =
(Q4/M2)(ξ2

0/ξ3)(2 − ξ/x)

2ξ0 − 4

where

structure functions at large x from form factors !

ξ0 = ξ(x = 1)



Local elastic duality

neutron to proton structure function ratios
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testable predictions for           behavior x → 1

WM, PRL 86 (2001) 35



Local Duality &
Nuclear Modifications               

WM, Tsushima, Thomas



can recent   He (e,e’p) data be interpreted in terms of 
medium modified form factors ?

4

use local duality to relate medium modified form factors
to medium modified structure functions (EMC effect)
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medium modified structure functions

F p∗
2

F p
2

≈

dGp∗2
M /dQ2

dGp2

M/dQ2
large Q2

note:  threshold for bound nucleon at x∗

th =

(
mπ(2M + m2

π
) + Q2

mπ(2(M∗ + V ) + mπ) + Q2

)
xth
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x

< 5% effect in QMC

point-like configuration model

F ∗

2 (k, x)

F2(x)
= 1 − 2(k2/2M + εA)/∆Ea

attributes EMC effect to deformation
of bound nucleon structure



conversely, change in form factor of bound nucleon
implied by change in structure function in medium

[
Gp

M (Q2)
]2

≈

2 − ξ0

ξ2
0

(1 + τ)

(1/µ2
p + τ)

∫ 1

ξth

dξ F p
2
(ξ)

0 0.5 1 1.5 2
0.7
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Q (GeV  )
2 2

G PLC model + duality

p
*

M

p
G
M

/

He
4

QMC

predicts 20% suppression
in magnetic form factor 

enhancement of PT ratio

contrary to  He data4



Truncated Moments

Psaker, Christy, Keppel, WM (2007)



complete moments can be studied in QCD via twist expansion

e.g. need prescription for how to average over resonances

for “local” duality, difficult to make rigorous connection with QCD

truncated moments allow study of restricted regions in x (or W)
within QCD in well-defined, systematic way

Truncated moments

Bloom-Gilman duality has a precise meaning

Mn(∆x, Q2) =

∫
∆x

dx xn−2 F2(x, Q2)

           (i.e., duality violation = higher twists)



truncated moments obey DGLAP-like evolution equations,
similar to PDFs

can follow evolution of specific resonance (region) with
in pQCD framework!

Q2

Truncated moments

dMn(∆x, Q2)

d log Q2
=

αs

2π

(
P ′

(n) ⊗ Mn

)
(∆x, Q2)

suitable when complete moments not available

where modified splitting function is

P ′

(n)(z, αs) = zn PNS,S(z, αs)



truncated moment evolution equations exist for singlet (S)
and nonsinglet (NS) separately

Truncated moments

for analysis of data, do not know much of experimental
structure function is NS and how much is S

for higher moments, small-x region is further suppressed,
so that NS is a very good approximation to total

for lowest (n=2) truncated moment, assumption that
total     NS is good to few % for ≈ xmin > 0.2
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Psaker et al. (2007)
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Parameterization of       dataF
p
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Parameterization of       dataF
p

2
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how much of this region
is leading twist ?
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Analysis of Hall C data

assume data at highest       (                    ) is entirely leading twistQ2
= 9 GeV

2Q2

evolve (as NS) fit to data at                      down to lower Q2
= 9 GeV

2 Q2

apply TMC, and compare with data at lower Q2

Psaker et al. (2007)
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Analysis of Hall C data
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Analysis of Hall C data

consider individual resonance regions:

“F15(1680)”

“∆(1232)”

“S11(1535)”

W
2
thr < W

2
< 1.9 GeV

2

1.9 < W
2

< 2.5 GeV
2

2.5 < W
2

< 3.1 GeV
2

as well as total resonance region:

W
2

< 4 GeV
2
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Analysis of Hall C data

method breaks down for
low x (high W) at low Q2
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higher
moments
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Summary

Remarkable confirmation of quark-hadron duality in
structure functions  

higher twists “small” down to low Q2
2(~ 1 GeV  )

Truncated moments  

method can be applied to nuclear cross sections,
relating nuclear structure functions to transition
form factors

Local (elastic) duality

firm foundation for study of local duality in QCD

constraints on nuclear EMC effect
and medium modified form factors


