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Outline

Why are high-momentum (large x) quarks in the
nucleon important?

Navigating the large-x landscape

—> nuclear effects & d/u PDF ratio
— subleading 1/Q* corrections

New global analysis (“CTEQX”)

— first foray into high-x, low-Q? region
— surprising new results for d quark

Extension to SIDIS
— target and hadron mass corrections

Summary




Why are PDFs at large x interesting’

B Most direct connection between quark distributions and
nonperturbative structure of nucleon is via valence quarks

—> most cleanly revealed at x > 0.4

0.6

structure of hadron
or structure of probe?!




Why are PDFs at large x interesting’

B Most direct connection between quark distributions and
nonperturbative structure of nucleon is via valence quarks

B Predictions for x — 1 behavior of e.g. d/u ratio
—> scalar diquark dominance: d/u =0 Feynman (1972)

—> hard gluon exchange: d/u = 1/5  Farrar, Jackson (1975)

—> SU(6) symmetry: d/u=1/2




Why are PDFs at large x interesting’

B Most direct connection between quark distributions and
nonperturbative structure of nucleon is via valence quarks

Predictions for x — 1 behavior of e.g. d/u ratio
—> scalar diquark dominance: d/u =0 Feymman(1972)

—> hard gluon exchange: d/u = 1/5  Farrar, Jackson (1975)

—> SU(6) symmetry: d/u=1/2

Needed to understand backgrounds in searches for

new physics beyond the Standard Model at LHC
or in v oscillation experiments

—> DGLAP evolution feeds low x, high O° from high x, low 0*




B At large x, valence u and d distributions extracted
from p and n structure functions, e.g. at LO
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B u quark distribution well determined from proton

B d quark distribution requires neutron structure function
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B No FREE neutron targets

(neutron half-life ~ 12 mins)

Ratio to CTEQS

==p Uuse deuteron as 4
effective neutron target 3
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large uncertainty beyond x ~ 0.5

B BUT deuteron is a nucleus

= [¢ L [P [0

= nuclear effects (nuclear binding, Fermi motion, shadowing)
obscure neutron structure information

=p need to correct for “nuclear EMC effect”




Large-x landscape:
nuclear effects in the deuteron




B nuclear “impulse approximation”

—> incoherent scattering from individual nucleons in d
(good approx. at x >> 0)
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/

nucleon momentum
distribution in d off-shell

—> Yy =p-q/P-q light-cone momentum fraction of d carried by N

—> at finite Q°, smearing function depends also on parameter
v = lal/go = /1 +4M?22/Q?




N momentum distributions in d
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—> deuteron wave function ©¥4(p) broader with

—> deuteron separation energy Increasing “y
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effectively more

smearing for larger x
or lower Q2




Off-shell nucleons

B relativistic calculation required development of
formalism for DIS from off-shell nucleons

—> original motivation was for computing
pion cloud corrections to nucleon PDFs

(d/u ratio)!
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Off-shell nucleons

B relativistic calculation required development of
formalism for DIS from off-shell nucleons

—> original motivation was for computing
pion cloud corrections to nucleon PDFs NV

(d/u ratio)!

N

—> identify conditions under which usual convolution
model of nuclear structure functions holds:
in general these are noft satisfied in relativistic framework

—> but can isolate (dominant) convolution component,
with (small & model-dependent) off-shell corrections




Off-shell nucleons

5(OH:)FQd —> 5(\11)F2d negative energy components of g

2
—> 5(p )FZd off-shell N structure function

quark-diquark
vertex functions




EMC effect in deuteron

- light-cone
— off-shell
- -- density

no binding\
with binding . ;
+ off-shell ~~.

_ nuclear density

assumes EMC effect
scales with density;
extrapolated from
Fe — deuterium

—> ~2-39% reduction of FY/F}" at x ~0.5-0.6
with steep rise for x > 0.6-0.7

—> larger EMC effect at x ~ 0.5-0.6 with
binding + off-shell corrections cf. light-cone




EMC effect in deuteron

- light-cone
— off-shell
- -- density

no binding
\.. J
N _ nuclear density

with binding
+ off-shell ~~.

—> using off-shell model, will get larger neutron
cf. light-cone model

—> but will get smaller neutron cf. no nuclear effects
or density model




EMC effect in deuteron

A WARNING €©

—> EMC ratio depends also on input nucleon SFs;
need to iterate when extracting F,'




Large-x landscape:
subleading 1/Q° corrections




Target mass corrections
B At fixed final state hadron mass W? = M* + Q*(1 — z)/z
larger x corresponds to smaller Q*

—> need to account for kinematical target mass corrections
arising from Q?/v° terms in the OPE (v = Q°/2Mv)

—> gives rise to new Nachtmann scaling variable

B 2x
1+ +/1+4M322/Q?

§

B Target mass corrected structure function (leading twist)
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Target mass corrections

A E94-110"
Resonance Fit
— LT+TMC

LT * |Lab Hall C

WM, Ent, Keppel
Phys. Rept. (2005)

—>» TMC important for verification of quark-hadron duality




Target mass corrections

B Bur TMCs not unique: e.g. in collinear factorization

—>» work directly in momentum space at partonic level
(avoids need for Mellin transform)

—>» expand parton momentum k around its on-shell and
collinear component (k3 — 0)

Ellis, Furmanski, Petronzio (1983)

f/iE

Frr(z,Q%) \ 7Q2> q(y, Q%)

Accardi, Qiu (2008)
avoids unphysical x > 1 region

—> at leading order
x

F(2,Q%) = 2 F{¢, Q%)

~ 51 FQOPE (, Q2 ) Kretzer, Reno (2004)
T




Target mass corrections

B Bur TMCs not unique: e.g. in collinear factorization
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Accardi, Qiu (2008)

—>» TMC important at large x even for large Q?




Higher twists

B 1/Q? expansion of structure function moments
1 A(4) A(6)
Ma(@) = [ doa"? Fa(a, Q) = A + P Dot
0 7 Q Q
matrix elements of operators with
specific “twist” (= dimension - spin)

—>» twist > 2 reveals long-range
mulit-parton correlations

B phenomenologically important wherever TMCs important

—>» parametrize x dependence by

Fy(z, Q%) = Fyt(z,Q%) (1 +




New global analysis
(“CTEQX")

Joint CTEQ-JLab collaboration
A. Accardi, E. Christy, C. Keppel,
W.M., P. Monaghan, J. Morfin, J. Owens

Accardi et al., Phys. Rev. D 81, 034016 (2010)




B Next-to-leading order analysis of expanded set of
proton and deuterium data, including large-x, low-Q* region

—> also include new CDF & DO W-asymmetry, and E866 DY data

B Systematically study effects of Q° & W cuts

—> aslowas Q~m_.and W~ 1.7 GeV

B Include subleading 1/Q* corrections

—> target mass corrections & dynamical higher twists

B Correct for nuclear effects in the deuteron (binding + off-shell)

—> most global analyses assume free nucleons; some use
density model, a few assume Fermi motion only




Kinematic cuts
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Q* >4 GeV”, W?>12.25 GeV%
Q? >3 GeV?, W?>8 GeV” S factor 2 increase
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Effect of new data on
“standard” fits (cutO)
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extrapolation
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— 1o nuclear or 1/0?
corrections
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no significant effect
in measured region

o

—

u suppression at large x
due to E866 DY data
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Effect on “reference” fit (cut0)
from 1/0% and nuclear corrections

—

| | I I | |

| |
u/u, cut0

—> cutO limits significant
change to u quark
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—> profound effect on

d quark from nuclear
corrections in deuteron
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—> must include deuteron
corrections for x> 0.5
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Effect of Q> & W cuts

B Systematically reduce Q% and W cuts

B Fit includes TMCs, HT term, nuclear corrections

2 L
Q*=10 GeV?

—> stable with respect
to cut reduction
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—> d quark suppressed

by ~ 50% for x > 0.5

(driven by nuclear
corrections)
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Nuclear corrections

—> increased d quark for

no nuclear effects

(compensates for nuclear smearing
in deuteron = increased F¢)

lllllllll

—» decreased d quark for
nuclear smearing models

\

Fg/Fy > 1 for x ~0.6-0.8
while F¢/FY < 1 for “free”
and “density” models

nuc. smear.
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d N
s FIFY <> 1Y
assumes Fy = FJ + F3' as in CTEQG6.1
and most other global fits <> d/u *




Effect of 1/Q? corrections
6

-

-

x2/d.0.4~1.3 | = no TMC
—— - ¢=-scaling

CF

MRST

(no TMC or
Nuc.CoIT.)

~=== no TMC
¢—scaling

——— OPE

— CF

Q*=10 GeV?
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—> 1/Q? HT coefficient parametrized as C(z) = c;2%(1 + c3)

—> important interplay between TMCs and higher twist:
HT alone cannot accommodate full 0° dependence

—> stable leading twist when both TMCs and HTs included




Deuteron / proton ratio

B Consistency check of fit with F¢/F? ratio (not used in fit)
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—> fits without nuclear smearing in deuteron overestimate
data at intermediate x, do not reproduce rise at large x




Deuteron / proton ratio

B Consistency check of fit with F¢/F? ratio (not used in fit)
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xg=0.45 T %3=0.55

—> fits without nuclear smearing in deuteron overestimate
data at intermediate x, do not reproduce rise at large x




Final PDF results

—> full fits favors
smaller d/u ratio
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Final PDF results
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Final PDF results
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Future methods of determining d/u

6d%€pspecX*

e "He(*H) — e X~

X
ep—ent X

e p—v)X
v(iv)p— It X
pp(p) —» W*X

er(€r) p— e X7

semi-inclusive DIS from d
—> tag “spectator’ protons

3He-tritium mirror nuclei

semi-inclusive DIS as flavor tag

weak current as flavor probe

*planned for JLab at 12 GeV




Semi-inclusive DIS:
hadron mass corrections

Hobbs, Accardi, Melnitchouk, JHEP 11, 084 (2009)




Semi-inclusive DIS offers tremendous opportunity for
determining

— spin-flavor decomposition of nucleon PDFs
(e.g.d/u, dli, Ad-Au)

— new distributions, not accessible in inclusive DIS
(e.g. transversity, Sivers function, efc)

In parton model cross section has simple factorization

do
Tragras, ~ 2w d) D @

* DZ quark — hadron fragmentation function

: E
* 25 = Pn'P 21 fractional energy of produced hadron

q9-P v (at large Q)




B At finite Q° parton model expression can have important
corrections arising from

— x -z, factorization breaking

— subleading M?*/Q* & mj} /Q* hadron mass corrections (HMC)

B SIDIS kinematics

M?
pt it + ——nt
2pT ,
T M I
EpT ntt + 2§p+n
X%

26pT

§my, 4

ChQQp nt + nt + p

n*, n* light-cone unit vectors

“(p,q)” collinear frame: p, g in same plane as n, 7




B In (p,q) frame cross section becomes

do

G dds, e2 q(€n, Q) D(Ch, Q)

q

2
vosi(ingh) eem2E(y

— hadron mass dependence in quark distribution function

— factorization breakdown (but quantifiable)

O Finite-Q2 constraints on scaling variables
1

(my +2Mm3,)/Q?

* o< N+h exclusive threshold
* 2z > 2xMmy,/Q?

* (MP/(1-6)Q* < ¢ < 1+EM?/Q?




Ratio 0/0'?) of corrected to uncorrected (massless limit)
7w+ 4+ 7~ cross sections

— use CTEQ6L PDFs and KPP fragmentation functions

— dramatic rise as z,, — 1, more pronounced at low Q*

— order of magnitude larger effect at large x
(mostly due to TMC in PDF)




B Flavor and mass dependence of o /o0

m, =035 GeV

m, = 10GeV

— downward correction at small z, for heavier hadrons
driven by suppression of PDF from (1 + mj/¢,Q?)
factor in &, (> ¢)

— reshuffling of HMC hierarchy at large 7, reflects larger
(negative) slope of K and p fragmentation functions

— effect small for 7 but significant for masses ~ 1 GeV,
even at Q2~ several GeV~




Hadron mass corrections to fragmentation functions

T T
—
-

| JLab E00-108

A 1
0.2z 04 0.6 (LY

— HMC larger for unfavored fragmentation function D
than for favored D" because of steeper fall-off with z,

D(Cn) ~14 D'(zn)

D) S Dy )

effect on R =D~ /D" illustrated by comparison of
SMMCR — (D= /D*) — (D~ /D) with experimental error

correction at z, = 0.6 comparable to JLab E00-108
uncertainty




B Hadron mass corrections to SIDIS charged hadron cross sections
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— HMC to (mostly ) cross section negligible for small x
(e.g. HERMES)

— significant corrections to cross sections at larger x
(e.g. JLab)

— to avoid HMC need smaller x or larger Q*...
or include HMC in data analysis!




Summary

B New frontiers explored at large momentum fractions x
—> dedicated global PDF analysis (CTEQX)

B Stable leading twist PDFs obtained for x < 0.8 and 0% >1.5 GeV?
provided nuclear and subleading 1/Q? corrections included

—> opens door to study of nucleon structure
over large kinematic domain

B Results suggest smaller d/u ratio for x > 0.6
—> further constraints will require novel new experiments

B Derivation of HMCs in SIDIS using collinear factorization
—> modified fragmentation variable, corrections to x-z,
factorization

—> effects largest for heavier hadrons (K, p)




