The factors of two in the time difference resolution

Blake Leverington

February 29, 2008

In KLOE's beam tests $[1,2]$ they quote their time difference as

$$
\begin{equation*}
\Delta T_{K L O E}=\frac{1}{2} \frac{\sum_{i} E_{i}\left(T_{A, i}-T_{B, i}\right)}{\sum_{i} E_{i}} \tag{1}
\end{equation*}
$$

which results in a time resolution of $\sigma(T$ or $\Delta T)=\sim 50 \mathrm{ps} / \sqrt{E(G e V)}$. Notice that they have the sum over the geometric mean of the energy where

$$
\begin{equation*}
E_{i}=\sqrt{E_{N, i} \cdot E_{S, i}} \tag{2}
\end{equation*}
$$

After re-examining the the analysis code, the results I have so far reported have followed the form

$$
\begin{equation*}
\Delta T_{\text {Glue } X}=\frac{1}{2}\left(\frac{\sum_{i} T_{N, i} E_{N, i}}{\sum_{i} E_{N, i}}-\frac{\sum_{i} T_{S, i} E_{S, i}}{\sum_{i} E_{S, i}}\right) \tag{3}
\end{equation*}
$$

which resulted in a time difference resolution of

$$
\begin{equation*}
\sigma_{\Delta T_{\text {GlueX }}}=\frac{74 p s}{\sqrt{E(G e V)}} \oplus 33 p s \tag{4}
\end{equation*}
$$

In the case of $E_{N}=E_{S}$ then $\Delta T_{\text {Glue } X}=\Delta T_{K L O E}$ and all is good.
Re-analysis of the Run 2334 at 90° with a fast analysis code on the ASCII data file bcal02334.ascii using Eq. 3, as seen in Fig. 1 results in a timing resolution of $76 \mathrm{ps} / \sqrt{E(G e V)}+53 \mathrm{ps}$. Similar analysis with Eq. 1, as seen in Fig. 2 results in a timing resolution of $79 \mathrm{ps} / \sqrt{E(G e V)}+50 \mathrm{ps}$. A slower but possibly more thorough analysis lowers the floor term to $33 p s$, as stated previously.

References

[1] J. Lee-Franzini et al., The KLOE electromagnetic calorimeter, 1995, Nucl. Instrum. Meth. A360, 201-205.
[2] A. Antonelli et al., The electromagnetic calorimeter of the KLOE experiment at DA Φ NE 1996, Nucl. Instrum. Meth. A379, 511-514.

Figure 1: The time difference resolution using Eq. 3.

Figure 2: The time difference resolution using Eq. 1.

