Life between KSW and Weinberg Renormalization and power counting of chiral nuclear forces

Bingwei Long

Theory Center Jefferson Laboratory

in collaboration with C. J. Yang (U. Arizona)

Chiral Dynamics 12, Newport News

August 6, 2012

A modest goal

Chiral EFT for few-nucleon system:

- interesting as chiral NON-perturbation theory
- useful for low-energy nuclear physics
 - ullet for most nuclei, binding momenta $Q\lesssim 140~{
 m MeV}$
 - light-nucleus reactions relevant in fusion physics, big-bang nucleosynthesis

... :
$$d + {}^{3}H \rightarrow {}^{4}He + n(14 \text{ MeV})$$

 $d + d \rightarrow {}^{3}He + n(2.5 \text{ MeV})$
...

First step: NN scattering for $k_{\rm CM} \lesssim 200$ MeV within first few orders

Guidelines

- One Lagrangian, many power countings (PCs)
 Renormalization-group invariance help to rule out PCs, but there still may be several self-consistent PCs
- Power counting at the level of on-shell amplitude

Paradigm of power counting

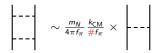
$$M_{
m hi} \sim 4\pi f_\pi \simeq 1.2 \; {
m GeV}$$

- long-range physics: non-analytic part of loops, contributed by momenta near mass shell
- \bullet short-range physics: by naturalness, counterterms comparable to the non-analytic part \to naive dimensional analysis (NDA) can be used

$$[g] = mass^{-2}
ightarrow g \sim rac{1}{M_{
m hi}^2}$$

- ! difficult to capture numerical factors: better not take 4π too seriously
- ! LEC may be less suppressed due to fine-tuning

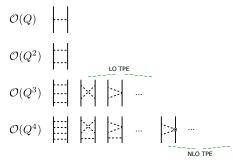
Loss of power in counting?



NN cut $\rightarrow m_N$ appearing in numerator

- KSW: $\#f_\pi \sim 300 \text{ MeV} \rightarrow \text{expansion in } Q/300 \text{ MeV}$ (Kaplan, Savage & Wise , 1998). Too optimistic for spin-triplet channels (Fleming, Mehen & Stewart, 2000)
- Weinberg: $M_{\rm lo} \equiv \# f_{\pi} \sim f_{\pi} \simeq 92 \; {\rm MeV}$
- \bullet Two mass scales \to naive dimensional analysis no longer powerful $m_{\rm lo}\sim 100$ MeV, $m_{\rm hi}\sim 1000$ MeV
- Solution: nonperturbative pion in lower partial waves and perturbative pion in higher partial waves (Nogga et al, 2005)

Perturbative pion in higher partial waves

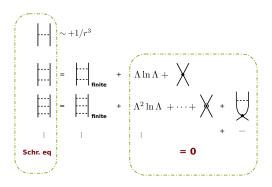


 $\mathcal{O}(1)$ being OPE-resummed lower partial waves

- Reducible pion loops less suppressed (KSW)
- Peripheral partial waves may need revisit

Nonperturbative pion: triplet channels

Eg.



- Resumming OPE ≈ imposing at LO correlations among counterterms
- More nontrivial in attractive triplet channels (Beane et al, 2002; Nogga et al, 2005; Valderrama et al, 2005 - 2007)
 - \rightarrow 3P_0 counterterm at LO: two-derivative operator not suppressed!

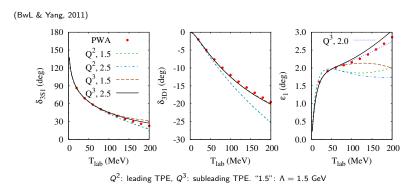
Subleading orders of triplet channels

Power counting of pion exchanges not affected much: TPE still suppressed by two orders

Subleading counterterms are those necessary to renormalize insertions of TPE

$$\begin{split} \mathcal{L}_{3P0} &= D_0(N^{\dagger}\partial^2 N)(N^{\dagger}N) + D_2(N^{\dagger}\partial^4 N)(N^{\dagger}N) + \cdots \\ D_0 &\propto \frac{1}{M_{lo}^2}, D_2 \propto \frac{1}{M_{lo}^2 M_{hi}^2}, D_4 \propto \frac{1}{M_{lo}^2 M_{hi}^4} \cdots \end{split}$$

(BwL & Yang 2011; Valderrama 2011)

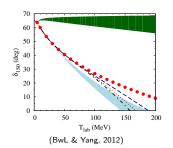


- \bullet Plots not shown here: 3P_0 and 3P_1 (BwL & Yang, 2011)
- Overall good fit up to $T_{\rm lab} \sim 100$ MeV ($k_{\rm CM} \simeq 200$ MeV). Can be improved by tuning $\pi\pi NN$ couplings, especially in 3P_1 .

Saga of 1S_0

- ${}^{1}S_{0}$ LO = Yukawa + $C_{{}^{1}S_{0}}$
- 1S_0 LO residual cutoff dependence $=\mathcal{O}(Q/\Lambda)>\mathsf{TPE}=\mathcal{O}(Q^2/M_{\mathsf{hi}}^2)$
 - \circ $\mathcal{O}(Q)$ does not vanish, unlike Weinberg's
 - subleading counterterms more important than TPE
- Pionless-theory-like power counting (KSW, 1998; Birse et al, 1999)

$$\begin{split} \mathcal{L}_{1S0} &= C_0 (N^\dagger N)^2 + C_2 (N^\dagger \partial^2 N) (N^\dagger N) + \cdots \\ C_0 &\propto \frac{1}{M_{lo}}, C_2 \propto \frac{1}{M_{lo}^2 M_{hi}}, C_4 \sim \frac{1}{M_{lo}^3 M_{hi}^2} ... \end{split}$$



- Green: $\mathcal{O}(1)$ with $\Lambda=0.5-2.0$ GeV
- Blue: $\mathcal{O}(Q)$ with $\Lambda = 0.5 2.0$ GeV
- Lines: $\mathcal{O}(Q^2)$. Dashed 0.5, dotted 1.0, and dot-dashed 2.0 GeV

Improve LO of 1S_0

Only C₀ at LO (Kaplan et al, 1996):

$$V^{(0)} = V_{Yukawa} + C_0 , \ T^{(0)}_{1S0} = T_{Yukawa} + \frac{\chi^2(k;k)}{\frac{1}{C_0} - I_k} , \ I_k \sim \#\Lambda + \# \ln \Lambda$$

ullet To introduce energy dependence in LO counterterm, use spin-0, di-baryon field ϕ (Kaplan, 1996, with a bit of change):

$$V^{(0)} = V_{Yukawa} + \frac{\sigma y^2}{E + \Delta}, \qquad T^{(0)}_{1S0} = T_{Yukawa} + \frac{\chi^2(k;k)}{\frac{E + \Delta}{\sigma y^2} - I_k}$$

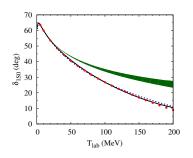
$$\sigma = -1, \quad \Delta_R \sim 13 \text{MeV}$$

¹S₀ Dibaryon

- ullet ϕ an auxiliary field to facilitate resummation, not physical d.o.f.
- \bullet Lagrangian with dibaryon not most general \to at a given order the number of c.c. not increased

	with dibaryon	w/o dibaryon
O(1)	$rac{\sigma y^2}{E+\Delta}+$	$C_0 + C_2 p^2 + $ Yukawa
$\mathcal{O}(Q)$	C_0	$C_4 p^4$
$\mathcal{O}(Q^2)$	$C_2 p^2 + $ leading TPE	$C_6 p^6 + $ leading TPE

$^{1}S_{0}$ phase shifts



- Green: $\mathcal{O}(1)$ with $\Lambda=0.6-1.6$ GeV
- \bullet Blue: $\mathcal{O}(\textit{Q})$ with $\Lambda=1.6~\text{GeV}$
- Black: $\mathcal{O}(\textit{Q}^2)$ with $\Lambda=1.6~\text{GeV}$

Conclusion

- Nuclear EFT: power counting done at the level of on-shell diagrams
- RG invariance may allow several power countings
- Need to revisit the lower bound of $J(L)_{pert.pion}$
- ullet Dibaryon field improves convergence of 1S_0