Direct Observation of a New 2⁺ State in 12 C through the 12 C + $\gamma \rightarrow 3\alpha$ Reaction

William Zimmerman

Triangle Universities Nuclear Laboratory

University of Connecticut

Chiral Dynamics 2012

Astrophysics

Triple- α Process:

M. Hjorth-Jensen, Physics 4, 38 (2011)

Hoyle State

Hoyle State

Fynbo & Freer, Physics 4, 94 (2011)

Hoyle State

Fynbo & Freer, Physics 4, 94 (2011)

Triple- α Reaction Rates

Introduction

 γ-ray beam will not excite 0⁺ state and will excite 3⁻ state with very small probability.

$^{12}\mathrm{C}(\gamma, \overline{\alpha})^{8}\mathrm{Be}$

- γ-ray beam will not excite 0⁺ state and will excite 3⁻ state with very small probability.
- Measuring α -particle angular distribution gives J^{π} of state.

$^{12}\mathrm{C}(\gamma,\alpha)^8\mathrm{Be}$

- γ-ray beam will not excite 0⁺ state and will excite 3⁻ state with very small probability.
- Measuring α-particle angular distribution gives J^π of state.
- Measuring cross section over several γ -ray beam energies gives Γ_{α} , Γ_{γ} , and E_{res}

Measuring $^{12}\mathrm{C}(\gamma,\alpha)^8\mathrm{Be}$ requires:

Measuring $^{12}C(\gamma,\alpha)^8$ Be requires:

• Intense, monoenergetic γ -ray beam

Measuring $^{12}C(\gamma,\alpha)^8$ Be requires:

- Intense, monoenergetic γ -ray beam
- Detector capable of measuring angular distributions of recoiling α -particles with little or no background

$HI\gamma S$ Facility

$HI\gamma S$ O-TPC

$HI\gamma S$ O-TPC

Drift Chamber

Optics Chain

$HI\gamma S$ O-TPC

Background Rejection

Event Identification

Event Identification

$$^{12}\mathrm{C}(\gamma,\alpha)^8\mathrm{Be}$$

$$^{16}\mathrm{O}(\gamma,\alpha)^{12}\mathrm{C}$$

• θ was calculated for each event from the track image and from the time projection.

- θ was calculated for each event from the track image and from the time projection.
- Angular distributions were fit in terms of |E1|, |E2|, ϕ_{12} :

$$W(\theta) = \frac{3}{2}\sin^2\theta \times \left(3|E1|^2 + 25|E2|^2\cos^2\theta + 10\sqrt{3}|E1||E2|\cos\phi_{12}\cos\theta\right)$$

- θ was calculated for each event from the track image and from the time projection.
- Angular distributions were fit in terms of |E1|, |E2|, ϕ_{12} :

$$W(\theta) = \frac{3}{2}\sin^2\theta \times \left(3|E1|^2 + 25|E2|^2\cos^2\theta + 10\sqrt{3}|E1||E2|\cos\phi_{12}\cos\theta\right)$$

• Since angular information is available for each event, Unbinned Maximum Likelihood fits were used.

$$\mathcal{L}(|E1|, |E2|, \phi_{12}) = \prod_{i=1}^{n} W(\theta_i)$$

Cross Section

Cross Section

$$\begin{array}{cccc} E_{res} & \Gamma_{\alpha}(res) & \Gamma_{\gamma_0}(res) & B(E2:2_2^+ \to 0_1^+) \\ \underline{(MeV)} & (keV) & (meV) & (e^2 fm^4) \\ \hline 10.03(11) & 800(130) & 60(10) & 0.73(13) \\ \end{array}$$

Phase

E1-E2 phase difference:

$$\phi_{12} = \delta_2 - \delta_1 + \arctan\left(\eta/2\right)$$

Phase

E1-E2 phase difference:

$$\phi_{12} = \delta_2 - \delta_1 + \arctan\left(\eta/2\right)$$

Nuclear phase shifts:

$$\delta_{\ell} = \arctan\left(\frac{\Gamma_{\ell}}{2\left(E_{r\ell} - \Delta_{\ell} - E_{cm}\right)}\right) - \phi_{\ell}$$

Hard sphere scattering phase shift:

$$\phi_{\ell} = \arctan\left[\frac{F_{\ell}}{G_{\ell}}\right]_{r=a}$$

Phase

Triple- α Reaction Rates

Triple- α Reaction Rates

Summary

$$\begin{array}{cccc} & 2_2^+ \\ & E_{\rm res} & \Gamma_{\alpha}({\rm res}) & \Gamma_{\gamma_0}({\rm res}) & B(E2:2_2^+ \to 0_1^+) \\ & \underline{({\rm MeV})} & ({\rm keV}) & ({\rm meV}) & ({\rm e}^2{\rm fm}^4) \\ & 10.03(11) & 800(130) & 60(10) & 0.73(13) \end{array}$$

• 2_2^+ in $^{12}{\rm C}$ has been directly observed through the $^{12}{\rm C}+\gamma \to 3\alpha$ reaction.

Summary

2_2^+								
	${ m E_{res}} \ m (MeV)$	$\Gamma_{\alpha}(\text{res})$ (keV)	$\Gamma_{\gamma_0}({ m res}) \ ({ m meV})$	$B(E2: 2_2^+ \to 0_1^+)$ $(e^2 \text{fm}^4)$				
$\begin{array}{c} \overline{\text{HI}\gamma\text{S}} \\ \text{EFT} \end{array}$	10.03(11) 9.65	800(130)	60(10)	0.73(13) $2(1)$				

- 2_2^+ in 12 C has been directly observed through the 12 C + $\gamma \rightarrow 3\alpha$ reaction.
- Recent *ab initio* EFT lattice calculations performed by Epelbaum, Krebs, Lähde, Lee, and Meißner predict the 2_2^+ 2 MeV above the Hoyle State.

Summary

2_2^+								
		${ m E_{res}} \ m (MeV)$	$\Gamma_{\alpha}(\text{res})$ (keV)	$\Gamma_{\gamma_0}({ m res}) \ ({ m meV})$	$B(E2: 2_2^+ \to 0_1^+)$ $(e^2 \text{fm}^4)$			
	$HI\gamma S$ EFT	10.03(11) 9.65	800(130)	60(10)	0.73(13) $2(1)$			

- 2_2^+ in 12 C has been directly observed through the 12 C + $\gamma \rightarrow 3\alpha$ reaction.
- Recent ab initio EFT lattice calculations performed by Epelbaum, Krebs, Lähde, Lee, and Meißner predict the 2⁺₂
 2 MeV above the Hoyle State.
- Revised triple- α reaction rates can affect nucleosynthesis of heavy elements during explosive astrophysics scenarios.

Acknowledgments

Mohammad Ahmed, Seth Henshaw, Jonathan Mueller, Sean Stave, and Henry Weller Triangle Universities Nuclear Laboratory

Moshe Gai Laboratory for Nuclear Science at Avery Point Results

Event Identification

$^{16}O(\gamma,\alpha)^{12}C$

