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Deriving Nuclear Forcesfrom QCD

The nuclear force is the fundamental problem in nuclear physics

Many phenomenological descriptions available which are,
however, not grounded in QCD.

The Goal: a QCD based description of the nuclear force
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Deriving Nuclear Forcesfrom QCD

Strategy 1: Lattice QCD (talks this morning) will eventually do it

Ishii, Aoki, Hatsuda 06 (with m. ~ 0.53 GeV, my ~ 1.34 GeV).

Strategy 2: Low energy EFT of nuclear forces incorporating
known low energy symmetries of QCD (if you can’t wait or you
don’t have a supercomputer)
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The Nucleon-Nucleon Chiral Potential (1)

Here we construct a nuclear effective field theory

Chiral perturbation theory is the starting point: the =N interaction
constrained by broken chiral symmetry (the QCD remnant).

Nucleons are heavy (My ~ A,): we can define a non-relativistic
potential (the Weinberg proposal) that admits an expansion

Weinberg (90); Ray, Ordonez, van Kolck (93,94); etc.
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Power Counting ()

It's important, so | repeat, there are two essential ingredients:
Chiral symmetry provides the connection with QCD.

Power counting makes the EFT systematic: it orders the infinite
number of chiral symmetric diagrams.

In EFT we have a separation of scales:

\

\cﬂwpwmﬂr\i Q<KA ~my,~My~Aarnf:

the know‘ﬁ physics the unkno‘v(vn physics

Then the idea is to expand amplitudes as powers of @ /Ag:

Vmax ( ) Q e |
T = v —
> + O(Ao)

V=—Vmin

Power counting refers to the set of rules from which we
construct this kind of low energy expansion.
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Power Counting (I1)

What is power counting useful for? What are its consequences?

If we express the NN potential as a low energy expansion:

VEFT = V(O)(CD +Vv®@ (q) + V(g)(Cﬁ + O(57) 5

we appreciate that the potential should convergence quickly at low
energies / large distances (and diverge at high energies).

Apart, we can know in advance how the potential diverges:

1
A(’§+27“’/+3

Do 1T e
V@ e 16, 2 VO o
f

f(myr).

This means that regularization and renormalization are required:
we will have a cut-off A.
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The Nucleon-Nucleon Chiral Potential (I1)

The NN chiral potential in coordinate space:

At long distances power counting implies:
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The Nucleon-Nucleon Chiral Potential (111)

However, at short distances the situation is just the opposite:

... as can be checked in coordinate space:

0.7 0.8 0.9 1 1.1 1.2 1.3 14 15
r [fm]

° ° ° ° ° ° ° ) °
Nuclear EFT —p. 8



Scattering Observables (1)

What about scattering observables? The naive answer is as follows:

® We plug the potential into the Lippmann-Schwinger equation
T = V+VGT

® We check that we preserve power counting in 7

=@+Q+@+._?

However, this is far from trivial.

° ° ° ° ° ° ° ° °
Nuclear EFT —p. 9



Scattering Observables (11)

What can fail in the power counting of the scattering amplitude?

We are iterating the full potential. Subleading interactions may
dominate the calculations if:

We are using a too hard cut-off, A > A.
We are not including enough contact range operators to

guarantee the preservation of power counting in 7'.

In either case we can end up with something in the line of:

G_Q+Q+@+...

that is, an anti-counting. Lepage (98); Epelbaum and Gegelia (09). This could be
happening to the N3LO potentials!
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Scattering Observables(111)

Let’s start all over again, but now we will be careful.
There is a fool proof way of respecting power counting in T:

We beginwith T =V + V Gy T

But now, we re-expand it according to counting, that is, we treat
the subleading pieces of V' as a perturbation.

7O = yO 4 yO G170
7@ = 1+T9G)VP (GyT? +1), etc.

Perturbations are small, so we expect power counting to hold.

And now we can give a general recipe for constructing a power
counting for nuclear EFT...
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Constructing a Power Counting

The Power Counting Algorithm (simplified version):

=©+©+Q+...

Choose a minimal set of diagrams (the lowest order potential):
this is the only piece of the potential we iterate!

Higher order diagrams enter as perturbations
At each step check for cut-off independence

If not, include new counterterms to properly the results.
Once cut-off independence is achieved, we are finaly done!

(Well, actually not. There are additional subtleties | didn’t mention.)
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ThelLeading Order Potential

What to iterate? Two (a posteriori obvious) candidates:

a) The bound (virtual) state happen at momenta of v = 45 MeV
(8 MeV), much smaller than m, = 140 MeV.

b) There is an accidental low energy scale in tensor OPE

167 f2
- 3Mng?
Kaplan, Savage, Wise (98); van Kolck (98); Gegelia (98); Birse et al. (98); Nogga,

AT ~ 100 MeV

Timmermans, van Kolck (06); Birse (06); Valderrama (11); Long and Chen (11).
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Check for Renor malizability (1)

The next step is to check cut-off dependence:
Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)
S-waves:
1Sy everything’s working fine.
3G, everything’s working fine too.
P-waves:
L Py, 3P;: again, everything’s working fine.
3 Py: hmmm... looks fine, unless the cut-off’s really high.
3 Py definitively, something’s wrong with this wave.

D-waves and higher:

a few hmmm...’s, but generally OK.

So it seems that we are not done with the leading order!
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Check for Renormalizability (11)

Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)

The 3 P, shows a strong cut-off dependence:
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Check for Renormalizability (111)

Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)

How to solve this issue? Easy: we include a P-wave counterterm at LO

In principle we should have

CSpoﬁ-ﬁ/ — )\2C3p0ﬁ-ﬁ/
Q—AQ

i.e. order Q?, which is true as far as Csp, (A\Q) = Csp,(Q).

But cut-off dependence at soft scales indicates that actually:

1 1
F CSpO (Q) or CBPO X AOQB
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Check for Renormalizability (1V)

Nogga, Timmermans, van Kolck (06); Valderrama, Arriola (06); Epelbaum, Gegelia (12)

After the promotion of Csp, from Q* to @~

we recover approximate cut-off independence. A similar thing happens
for the 3 P, and ° D, partial waves.
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Subleading Orders

Birse (06); Valderrama (11); Long and Chen (11).

We just follow the power counting recipe:

1) We include the subleading potential as a perturbation.

2) We check again for cut-off dependence.

3) And there is cut-off dependence:
we include a few new counterterms.

4) We re-check for cut-off dependence,
and now everything is working fine.

Of course, the actual calculations are fairly technnical,
but the underlying idea is fairly simple.

And we can summarize the results in a table.
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Nuclear EFT: Power Counting

Partialwave | LO | NLO | N2LO | N3LO
1S 1 3 3 4
381 — 3Dy 1 § § §
1p; 0 1 1 y)
3Py 1 2 2 2
3P 0 1 1 y)
3P, —3F, 1 § 6 6
1Dy 0 0 0 1
3Do 1 2 2 2
3D3 — 3G3 0 0 0 1
All 5 21 21 27
Weinberg 2 9 9 24

1) dependent on counterterm representation; ii) there are variations and fugues over this

theme,; iii) equivalent to Birse’s RGA of 2006, modulo i) and ii).
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Nuclear EFT: Phase Shifts

S, P and D-Waves

The following values have been taken:

fr =924MeV, m, = 138.04 MeV, dig = —0.97 GeV?2
¢y = —0.81CGeV!, ¢5 = —3.4GeV !, ¢4 = 3.4 GeV !

1/My corrections included at N2LO

Comparison with NLO Weinberg results of Epelbaum and Mei3ner.
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Nuclear EFT: S-Wave Phase Shifts
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Nuclear EFT: Remarks

S-waves are in general well-reproduced up to £ ~ 350 — 400 MeV.
P-waves tend to fail earlier (at £ ~ 300 MeV).

There is a defined convergence pattern.
Results are very sensitive to the value of c3 and ¢4.

Resulting power counting very similar to Birse’s 06.
(but a bit different from Long and Chen 11)

However there are consistency reasons to prefer higher cut-offs:
convergence of the perturbative series may require r. > 0.7 fm.

Phenomenologically higher cut-offs are also preferred:
the r. = 0.9 — 1.2 fm results are very similar to, and sometimes
better than, the r. = 0.6 — 0.9 fm ones.
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Formal Developments

What is the value of Ag In nuclear EFT?

This interesting question is linked with the following observations:

The cut-off is a separation scale: ) < A < Ay

If the cut-off A > Ay inconsistencies may happen.

(Well, this is actually a gross oversimplification. The real derivation is way too long.)

So we are going to look for a serious inconsistency that happens for a
hard value of the cut-off.

Which one? A failure in the perturbative expansion!
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Which isthe Hardest Possible Cut-off?

If power counting is on a firm basis perturbation theory must converge
and this condition imposes specific cut-off restrictions.

This condition holds for non-observables: if their perturbative
expansion is not converging we are not using the right counting.

Example: the running of Cy(r.) at N“LO in two schemes:

Non-perturbatively, solving Cy(r.) for the full N2LO potential.

With TPE potential as a perturbation :
The Oth order is Cy(r.) plus non-perturbative OPE
The 1st order is Cy(r.) plus first order perturbative TPE
The 2nd order is Cy(r.) plus second order perturbative TPE

Then we compare perturbative versus the non-perturbative.
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Which isthe Hardest Possible Cut-off?

If power counting is on a firm basis perturbation theory must converge
and this condition imposes specific cut-off restrictions.

full full
Oth order Oth order
1th order — —-— 1th order — —-—
2th order 2th order

At r. ~ 0.7 fm, Cy changes sign = first deeply bound state.
(Cannot be reproduced in perturbation theory)
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The Breakdown Scale

For transforming the Ry, radius into a momentum scale we use
T

ANoRay, = 5

(Entem, Arriola, Machleidt, Valderrama 07) yielding Ag ~ 400 — 500 MeV.

The expected expansion parameter is:

O 1 1

Yy . .

for the more conservative estimation Ag = 300 — 400 MeV.

The breakdown scale could have been anticipated on sigma and
rho exchange, yielding Ay ; = m,/2 and Ag; = m,/2.

Not completely new: the KSW expansion parameter (NTVK is
equivalent to KSW in the singlet), Birse’s remarks from
deconstruction, pole in the chiral potential by Baru et al. (12).
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The Cut-off Window

The softest value of the cut-off is related to the maximum external
momentum that we expect to describe within EFT (kpax o< A).

In r-space, the ideal cut-off window is given by:

O.7fm~L§rC< ~ 1.4fm

2AO _ k'max
The phase shifts can be described up to kp,.x.

If we want to get the most from nuclear EFT, we set k... = Ay.
A softer cut-off will simply reduce k..

In momentum space, the conditions are more stringent:

kmax S I\ S AO

explaining the narrowness of usual cut-off windows.
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External Probesand Power Counting

The previous ideas can be directly extended to deuteron reactions, in
which case renormalizability controls the counting of counterterms:
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Conclusions

Nuclear EFT

There exist a well-defined power counting for two-body
processes, and we know how to build it.

Minor issues: How many counterterms? RGA of repulsive interactions.

Scattering Observables well-reproduced up to
kem >~ 300 — 400 MeV.

Contact interactions are enhanced with respect to Weinberg.
As good as Weinberg, but without the consistency problems.

Formal developments:

Determination of the expansion parameter
Extension to reactions on the deuteron

Other things underway: chiral extrapolations, three body
systems, etc.
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