

Parity violation in radiative neutron capture on deuteron

Young-Ho Song (USC), Rimantas Lazauskas(Strasbourg, IPHC), Vladimir Gudkov (USC)

> Chiral Dynamics 12, Jefferson Lab Aug 06-10,2012

Introduction

• Direct application of standard model to (non-leptonic) hadronic parity violation is difficult.

DDH model

 Traditional approach : DDH (Desplanques, Donoghue, Holstein) model with meson exchange

DDH model

Experimental Constraints on couplings show inconsistency

Holstein, Eur.Phys.J.A 32,505 (2007)

Few body system
Would remove
nuclear uncertainty

Fig. 2. Restrictions on weak parity-violating pion and isoscalar vector meson couplings (in units of 3.8×10^{-7}) which arise from various particle and nuclear experiments.

EFT approach

- At Low energy, short range details can not be seen.
- Hide all details into several Low energy Constants and keep symmetry.
- -> Effective Field Theory : Most General Low energy theory

EFT approach

- Fixing all 5 LECs from two-body experiment
 is not feasible at this moment
 (n-p scattering, n-n scattering, n-p capture, ...)
- Need 3-body systems. : n-d scattering ,n-d capture

Hybrid Method

Introduce Weak Potential derived from EFT

SNPA

wave function

- Standard Nuclear Physics Approach: Wave functions of nucleons from highly accurate potential models (AV18+UIX)
- DDH and EFT can be treated in the same formalism.

- Y.-H. Song, et..al. Phys. Rev. C 83, 015501 (2011)
- R. Schiavilla, et.al., Phys. Rev. C 78, 014002 (2008).

PV potential

- Consider three Parity Violating NN potential model
 - DDH model
 - Pionless EFT(EFT without explicit pion)
 - Pionful EFT(EFT with explicit pion)
- All PV Potential model can be written in compact way

TABLE I: Parameters and operators of parity violating potentials. $g_A = 1.26, F_{\pi} = 92.4 \text{ MeV}.$

 $\mathcal{T}_{ij} \equiv (3\tau_i^z \tau_j^z - \tau_i \cdot \tau_j)$. Scalar function $\tilde{L}_{\Lambda}(r) \equiv 3L_{\Lambda}(r) - H_{\Lambda}(r)$.

\overline{n}	c_n^{DDH}	$f_n^{DDH}(r)$	$c_n^{\not \!$	$f_n^{\not t}(r)$	c_n^{π}	$f_n^{\pi}(r)$	$O_{ij}^{(n)}$
1	$+\frac{g_\pi}{2\sqrt{2}m_N}h_\pi^1$	$f_{\pi}(r)$	$-rac{\mu^2C_6^{\not\sigma}}{\Lambda_\chi^3}$	$f_{\mu}^{\not \!$	$+\frac{g_\pi}{2\sqrt{2}m_N}h_\pi^1$	$f^\pi_\Lambda(r)$	$(\tau_i \times \tau_j)^z (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,-}^{(1)}$
2	$-\frac{g_{\rho}}{m_N}h_{\rho}^0$	$f_{\rho}(r)$	0	0	0	0	$(\tau_i \cdot \tau_j)(\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,+}^{(2)}$
3	$-\frac{g_{\rho}(1+\kappa_{\rho})}{m_{N}}h_{\rho}^{0}$	$f_{\rho}(r)$	0	0	0	0	$(\tau_i \cdot \tau_j)(\boldsymbol{\sigma}_i \times \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,-}^{(3)}$
4	$-\frac{g_{\rho}}{2m_N}h_{\rho}^1$	$f_{\rho}(r)$	$\tfrac{\mu^2}{\Lambda_\chi^3}(C_2^{\not \!\!\!\!/}+C_4^{\not \!\!\!/})$	$f_{\mu}^{\not \!$	$\tfrac{\Lambda^2}{\Lambda_\chi^3}(C_2^\pi+C_4^\pi)$	$f_{\Lambda}(r)$	$(\tau_i + \tau_j)^z (\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}^{(4)}_{ij,+}$
5	$-\frac{g_{\rho}(1+\kappa_{\rho})}{2m_N}h_{\rho}^1$	$f_{\rho}(r)$	0	0	$\frac{2\sqrt{2}\pi g_A^3\Lambda^2}{\Lambda_\chi^3}h_\pi^1$	$L^\pi_\Lambda(r)$	$(\tau_i + \tau_j)^z (\boldsymbol{\sigma}_i \times \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,-}^{(5)}$
6	$-\frac{g_{\rho}}{2\sqrt{6}m_N}h_{\rho}^2$	$f_{\rho}(r)$	$-\frac{2\mu^2}{\Lambda_\chi^3}C_5^{\mathcal{T}}$	$f_{\mu}^{\not \!$	$-\frac{2\Lambda^2}{\Lambda_\chi^3}C_5^\pi$	$f_{\Lambda}(r)$	$\mathcal{T}_{ij}(oldsymbol{\sigma}_i - oldsymbol{\sigma}_j) \cdot oldsymbol{X}_{ij,+}^{(6)}$
7	$-\frac{g_{\rho}(1+\kappa_{\rho})}{2\sqrt{6}m_N}h_{\rho}^2$	$f_{\rho}(r)$	0	0	0	0	$\mathcal{T}_{ij}(oldsymbol{\sigma}_i imesoldsymbol{\sigma}_j)\cdot oldsymbol{X}_{ij,-}^{(7)}$
8	$-\frac{g_{\omega}}{m_N}h_{\omega}^0$	$f_{\omega}(r)$	$\frac{2\mu^2}{\Lambda_\chi^3}C_1^{\not\pi}$	$f_{\mu}^{\not \!$	$\frac{2\Lambda^2}{\Lambda_\chi^3}C_1^\pi$	$f_{\Lambda}(r)$	$(oldsymbol{\sigma}_i - oldsymbol{\sigma}_j) \cdot oldsymbol{X}_{ij,+}^{(8)}$
9	$-\frac{g_{\omega}(1+\kappa_{\omega})}{m_N}h_{\omega}^0$	$f_{\omega}(r)$	$\frac{2\mu^2}{\Lambda_\chi^3} \tilde{C}_1^{\not \pi}$	$f_{\mu}^{\not \!$	$\frac{2\Lambda^2}{\Lambda_\chi^3}\tilde{C}_1^\pi$	$f_{\Lambda}(r)$	$(oldsymbol{\sigma}_i imesoldsymbol{\sigma}_j)\cdot oldsymbol{X}_{ij,-}^{(9)}$
10	$-\frac{g_{\omega}}{2m_N}h_{\omega}^1$	$f_{\omega}(r)$	0	0	0	0	$(\tau_i + \tau_j)^z (\boldsymbol{\sigma}_i - \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,+}^{(10)}$
11	$-\frac{g_{\omega}(1+\kappa_{\omega})}{2m_{N}}h_{\omega}^{1}$	$f_{\omega}(r)$	0	0	0	0	$(\tau_i + \tau_j)^z (\boldsymbol{\sigma}_i \times \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,-}^{(11)}$
12	$-\tfrac{g_\omega h_\omega^1 - g_\rho h_\rho^1}{2m_N}$	$f_{\rho}(r)$	0	0	0	0	$(\tau_i - \tau_j)^z (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,+}^{(12)}$
13	$-\frac{g_{\rho}}{2m_N}h_{\rho}^{\prime 1}$	$f_{\rho}(r)$	0	0	$-\frac{\sqrt{2}\pi g_A\Lambda^2}{\Lambda_\chi^3}h_\pi^1$	$L^\pi_\Lambda(r)$	$(\tau_i \times \tau_j)^z (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij,-}^{(13)}$
14	0	0	0	0	$\frac{2\Lambda^2}{\Lambda^3}C_6^{\pi}$	$f_{\Lambda}(r)$	$(\tau_i \times \tau_j)^z (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j) \cdot \boldsymbol{X}_{ij}^{(14)}$

Hybrid Method for n-d capture

wave function: Solution of Faddeev eq.

$$(E - H_0 - V_{ij}^{PC}) \psi_k^+ = V_{ij}^{PC} (\psi_i^+ + \psi_j^+),$$

$$(E - H_0 - V_{ij}^{PC}) \psi_k^- = V_{ij}^{PC} (\psi_i^- + \psi_j^-) + V_{ij}^{PV} (\psi_i^+ + \psi_j^+ + \psi_k^+)$$

EM multipoles

$$X1_J \equiv \langle -\mathbf{q}, J_B || \hat{T}_1^X || J \rangle$$
, with $X = (M, E)$,

$$M1_J = i \frac{\omega \mu_N}{\sqrt{6\pi} \sqrt{4\pi}} \widetilde{\mathcal{M}}_J, \quad E1_J = -i \frac{\omega}{\sqrt{6\pi}} \widetilde{\mathcal{E}}_J,$$

NLO Parity violating EM charge operator Is not considered in this work

This is not a rigorous EFT calculation.

Model dependence have to be checked.

PV Observables

$$a_n^{\gamma}(E) \; = \; \frac{2}{3} \frac{\mathrm{Re} \left[\sqrt{2} (E1_{\frac{3}{2}}^* M1_{\frac{1}{2}} + E1_{\frac{1}{2}}^* M1_{\frac{3}{2}}) + \frac{5}{2} (E1_{\frac{3}{2}}^* M1_{\frac{3}{2}}) - (E1_{\frac{1}{2}}^{*,(+)} M1_{\frac{1}{2}}) \right]}{|M1_{\frac{1}{2}}|^2 + |M1_{\frac{3}{2}}|^2},$$

$$P^{\gamma}(E) = \frac{2\operatorname{Re}\left[E1_{\frac{1}{2}}^{*}M1_{\frac{1}{2}} + E1_{\frac{3}{2}}^{*}M1_{\frac{3}{2}}\right]}{|M1_{\frac{1}{2}}|^{2} + |M1_{\frac{3}{2}}|^{2}},$$

$$A_d^{\gamma}(E) \; = \; -\frac{\mathrm{Re}\left[-5E1^*_{\frac{3}{2}}M1_{\frac{3}{2}} - 4E1^*_{\frac{1}{2}}M1_{\frac{1}{2}} + \sqrt{2}E1^*_{\frac{3}{2}}M1_{\frac{1}{2}} + \sqrt{2}E1^*_{\frac{1}{2}}M1_{\frac{3}{2}}\right]}{2(|M1_{\frac{1}{2}}|^2 + |M1_{\frac{3}{2}}|^2)}.$$

$$\widetilde{\mathcal{E}}_J = \sum_n c_n \widetilde{\mathcal{E}}_J^{(n)}.$$

PV couplings (LECs)

$$X = \sum \left(\frac{c_m}{\mu_N}\right) X^{(m)},$$

$$E1_J = \langle J_B || \frac{q}{\sqrt{6\pi}} \sum_i Q_i r_i || J \rangle = (-i) \sum_n \frac{\omega}{\sqrt{6\pi}} c_n \widetilde{\mathcal{E}}_J^{(n)},$$

Hybrid Method for n-d capture

M1 amplitudes from Hybrid method

EM currents operator from EFT up to two-pion exchange order

Y.-H. Song, R. Lazauskas, and T.-S. Park, PHYS. REV. C **79**, 064002 (2009)

Correlation between M1 amplitudes
And 3H binding energy

$$\widetilde{\mathcal{M}}_{\frac{1}{2}} = +21.87 + 10.76[(B_{model}/B_{exp})^{-2.5} - 1] \text{ fm}^{\frac{3}{2}}$$

$$\widetilde{\mathcal{M}}_{\frac{3}{2}} = -12.24 - 11.35[(B_{model}/B_{exp})^{-2.5} - 1] \text{ fm}^{\frac{3}{2}}$$

$$\sigma = 0.49(1)mb$$

DDH potential case

TABLE III: Parity violating amplitudes $\widetilde{\mathcal{E}}_{J,(P)}$ in $\mathrm{fm}^{\frac{3}{2}}$ units, where (P) stands for the parity of the scattering wave, calculated with AV18+UIX strong and DDH-II weak potentials.

n	$\widetilde{\mathcal{E}}_{rac{1}{2},(+)}$	$\widetilde{\mathcal{E}}_{rac{1}{2},(-)}$	$\widetilde{\mathcal{E}}_{rac{3}{2},(+)}$	$\widetilde{\mathcal{E}}_{rac{3}{2},(-)}$
1	-3.37×10^{-1}	-3.75×10^{-2}	-1.44×10^{-2}	-2.97×10^{-1}
2	-2.64×10^{-3}	-1.52×10^{-2}	-5.37×10^{-3}	-2.52×10^{-2}
3	-9.72×10^{-3}	3.12×10^{-2}	-1.35×10^{-2}	1.31×10^{-2}
4	1.03×10^{-2}	-1.32×10^{-2}	1.47×10^{-2}	-2.87×10^{-3}
5	1.26×10^{-2}	-1.56×10^{-2}	1.75×10^{-2}	-3.79×10^{-3}
6	-2.03×10^{-3}	-8.85×10^{-3}	-1.85×10^{-3}	1.51×10^{-3}
7	-2.42×10^{-3}	-9.62×10^{-3}	-2.45×10^{-3}	1.94×10^{-3}
8	-7.37×10^{-3}	2.43×10^{-2}	-1.08×10^{-2}	9.51×10^{-3}
9	-7.10×10^{-3}	1.24×10^{-2}	-1.05×10^{-2}	-2.14×10^{-3}
10	9.79×10^{-3}	-1.25×10^{-2}	1.39×10^{-2}	-2.71×10^{-3}
11	1.20×10^{-2}	-1.48×10^{-2}	1.67×10^{-2}	-3.61×10^{-3}
12	-2.75×10^{-3}	9.29×10^{-3}	-4.10×10^{-4}	-9.10×10^{-3}
13	-3.05×10^{-3}	1.84×10^{-2}	-1.96×10^{-3}	-1.53×10^{-2}

DDH potential case(AV18+UIX, DDH)

$$a_n = 0.42h_{\pi}^1 - 0.17h_{\rho}^0 + 0.085h_{\rho}^1 + 0.008h_{\rho}^2 - 0.238h_{\omega}^0 + 0.086h_{\omega}^1 - 0.010h_{\rho}^{\prime 1} = 4.11 \times 10^{-7}$$

$$P_{\gamma} = -1.05h_{\pi}^1 + 0.19h_{\rho}^0 - 0.096h_{\rho}^1 - 0.018h_{\rho}^2 + 0.28h_{\omega}^0 - 0.046h_{\omega}^1 + 0.023h_{\rho}^{\prime 1} = -7.31 \times 10^{-7}$$

$$A_d^{\gamma} = -1.51h_{\pi}^1 + 0.17h_{\rho}^0 - 0.083h_{\rho}^1 - 0.024h_{\rho}^2 + 0.024h_{\omega}^0 + 0.013h_{\omega}^1 + 0.032h_{\rho}^{\prime 1} = -9.05 \times 10^{-7}.$$

TABLE IV: The DDH PV coupling constants in units of 10^{-7} (h'_{ρ} contribution is neglected). Strong interactions parameters are $\frac{g_{\pi}^2}{4\pi} = 13.9$, $\frac{g_{\rho}^2}{4\pi} = 0.84$, $\frac{g_{\omega}^2}{4\pi} = 20$, $\kappa_{\rho} = 3.7$, and $\kappa_{\omega} = 0$.

DDH Coupling	DDH 'best'	4-parameter fit[?]
h_{π}^{1}	+4.56	-0.456
$h_{ ho}^0$	-11.4	-43.3
$h_{ ho}^2$	-9.5	37.1
h^0_ω	-1.9	13.7
$h_{ ho}^1$	-0.19	-0.19
h^1_ω	-1.14	-1.14

DDH potential case

TABLE V: Parity violating observables for different potential models with the DDH-best parameter values and Bowman's 4-parameter fits in 10^{-7} units.

	DDH-best values			4-parameter fits		
models	a_n	P_{γ}	A_d	a_n	P_{γ}	A_d
AV18+UIX/DDH-I	3.30	-6.38	-8.23	1.97	-2.16	-1.81
$\mathrm{AV18}/\mathrm{DDH}\text{-}\mathrm{II}$	4.61	-8.30	-10.3	4.60	-5.18	-4.46
AV18+UIX/DDH-II	4.11	-7.30	-9.04	4.14	-4.71	-4.09
$\mathrm{Reid}/\mathrm{DDH} ext{-}\mathrm{II}$	4.74	-8.45	-10.4	4.70	-5.25	-4.46
NijmII/DDH-II	4.71	-8.45	-10.5	4.76	-5.26	-4.41
INOY/DDH-II	9.24	-12.9	-13.8	17.5	-17.9	-13.5

Pionless EFT case

TABLE VIII: Parity violating observables for AV18+UIX strong potential for $/\pi EFT$ -I at $\mu = 138$ MeV. The results are in fm^{-2} units.

n	$\frac{c_n}{\mu_N \mu^2}$	$\mu^2 a_n^{(n)}$	$\mu^2 P_{\gamma}^{(n)}$	$\mu^2 A_d^{(n)}$
1	$\frac{4m_N}{\Lambda_\chi^3}C_6^{\pi}$	2.17×10^{-2}	-5.52×10^{-2}	-7.93×10^{-2}
4	$\frac{2m_N}{\Lambda_{\chi}^3}(C_2^{7}+C_4^{7})$	-7.94×10^{-2}	6.55×10^{-2}	3.16×10^{-2}
6	$-\frac{2}{\Lambda_{\chi}^3}C_r^{\cancel{p}}$	-2.81×10^{-2}	5.96×10^{-2}	8.01×10^{-2}
8	$-\frac{4m_N}{\Lambda_\chi^3}C_1^{\pi}$	1.04×10^{-1}	-1.03×10^{-1}	-7.58×10^{-2}
9	$\frac{4m_N}{\Lambda_\chi^3}\widetilde{C}_1^{\not\pi}$	3.81×10^{-2}	-4.29×10^{-2}	-3.67×10^{-2}

DDH and Pionless EFT

- Amplitudes are sensitive to cutoff and model
- Large model dependence in heavy meson DDH potential
- Three body potential is important.

DDH and Pionless EFT: same scalar function

- Model/Cut off dependence of observable in EFT have to be considered after renormalization.
- Cutoff dependence in physical range can be absorbed to the LECs.
- Model dependence at short distance can be absorbed to the LECs.
- However, long distance model dependence can be a problem.

DDH and Pionless EFT: same scalar function

- At this moment, full analysis is not possible.
- Small model dependence at low cutoff is consistent with basic principle of EFT.
- => Model independence in the hybrid method.

Pionful EFT

Most of model dependence comes from short range part of wave functions

Results: revisit np capture

Two body n-p capture is easier to understand

TABLE XIII: Two-body Parity violating observables for potential models with DDH-best parameter values and Bowman's 4-parameter fits.

models		a_n^{γ}		P_{γ}
	DDH-best	4-para. fit	DDH-best	4-para. fit
AV18 + DDH-I	5.25×10^{-8}	-4.91×10^{-9}	6.94×10^{-9}	4.76×10^{-9}
AV18 + DDH-II	5.29×10^{-8}	-4.81×10^{-9}	1.76×10^{-8}	3.01×10^{-8}
NijmII+DDH-II	5.37×10^{-8}	-4.99×10^{-9}	2.61×10^{-8}	6.41×10^{-8}
Reid+DDH-II	5.33×10^{-8}	-4.85×10^{-9}	2.65×10^{-8}	4.68×10^{-8}
INOY+DDH-II	5.60×10^{-8}	-3.94×10^{-9}	2.55×10^{-7}	9.68×10^{-7}

a is dominated by one-pion exchange.

P is dominated by rho, omega meson exchange.

Results: revisit np capture

Two body n-p capture is easier to understand

 $(a)\mu^2\widetilde{\mathcal{E}}_{1,(+)}$ of operator 1

(b) $\mu^2 \widetilde{\mathcal{E}}_{0,(-)}$ of operator 9

Conclusion

- The relation between parity violating observables in neutron-deuteron capture and Low Energy Constants in parity violating nucleon-nucleon potential is calculated.
- Amplitudes of each LECs contributes at the same order of magnitudes.
- Amplitudes are sensitive to the short range details(potential model, cutoffs, type of weak potential)

- Theoretical prediction of observables are limited because of unknown couplings.
- Full analysis of model and cutoff dependence requires renormalization of LECs.
- Other type of scalar functions are tried and get similar overall behavior.
- Importance of consistent calculations in DDH potential. (Importance of 3-body potential.)
 if no pion dominance in the observable.
- EFT approach can give model independent results in the hybrid method.

Acknowledgement:

This work was supported by Department of Energy Grant No. DF-FG02-09FR41621.