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• Develop a unified theory for nuclei and connect it to QCD via
    Chiral Effective Field Theory

V = VNN + V3N + . . .V, Jµ

Jµ = Jµ
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Halo Nuclei - Experiment
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ARGONNE, Wang et al. PRL 93, 142501 (2004) 
GANIL, Mueller et al. PRL 99, 252501 (2007) 

Experiment
Theory
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TRIUMF, Ryjkov et al. PRL 101, 012501 (2008) 

2008

New Era of Precision Measurements for masses and radii

8He

•High-precision Penning trap and laser spectroscopy techniques allow accurate measurements of 
energies and charge radii of exotic isotopes challenge for ab initio calculations
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Missing: Predictions for EFT
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VNN > V3N > V4N

3N 4N

H(�) = T + VNN (�) + V3N (�) + V4N (�) + ...
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Weinberg, van Kolck, Kaplan, Savage, Wise,
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Vlow k

Low-momentum interactions: Bogner, Kuo, Schwenk (2003) need smaller basis

Evolution of 2N forces: phase-shift equivalent

Effective field theory potentials and low-momentum evolution

� � 1
r

 Like acting with a unitary transformation U-1VU still preserve phase-shifts and properties of 2N systems          

“freedom”

Low-momentum Forces from chiral EFT
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Variation of the cutoff provides a tool to 
estimate the effect of the short-range 3N forces
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 A basis set, that can be used to solve the Schroedinger equation by expanding the w.f. on a 
complete basis states

| i =
1X

i

ci | iiH | i = E | i

Hyperspherical Harmonics Expansions
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Hyperspherical Harmonics Expansions
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 6He from hyper-spherical harmonics
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• EI is key to reach a reliable convergence of radii
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• EIHH agrees with extrapolated HH results 
                             from EPJ A 42, 553 (2009)

Vlow k  from N3LO (500 MeV)Interaction:
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• Point-Proton radii converge better and are 
   smaller than matter radii           halo structure

Signatures of the halo

 6He from hyper-spherical harmonics
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 8He from hyper-spherical harmonics?
8He from coupled cluster theory
  Hilbert space: 15 major shell

Values in  MeV

S.B et al., EPJ A 42, 553 (2009)

⇥ E[CCSD] E[Lambda-CCSD(T)] �

1.8 -30.33 -31.21 0.88
2.0 -28.72 -29.84 1.12
2.4 -25.88 -27.54 1.66

Vlow k  from N3LO (500 MeV)Interaction:

    8He closed sub-shell nucleus

1s1/2

1p3/2

1p1/2

p n
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• Difference between  HH and EIHH is 
   about 2.4 MeV

• EIHH seems less effective than for 6He
   

E� = �31.49MeV

• Extrapolating HH results get 
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8He from hyper-spherical harmonics
 S.B. et al., arXiv:1202.0516
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Comparison with experiment
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Relativistic corrections

• It is important to compare more than one observable together
• We observe a correlation between radii and separation energy
• Theory needs (improved) 3NFs
   

 (a) Experimental matter radius  relatively uncertain 

 (b) Experimental charge radius well constrained 

Phys. Rev. Lett. 108, 052504 (2012)
 & arXiv:1202.0516
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 (b) Experimental charge radius well constrained 

Phys. Rev. Lett. 108, 052504 (2012)
 & arXiv:1202.0516 Future: 

Include 3NF from EFT
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Nuclear Electric Polarizability of 6He
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Nuclear Electric Polarizability of 6He

14

↵D =
1

2⇡2

Z 1

!th

d!
��(!)

!2
 It is a sum rule of the photo-disintegration cross section
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Calculations from EIHH with the simple semi-realistic Minnesota potential which gives 
compatible to the realistic potentials for 4He. 
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• Hyper-spherical harmonics provide a powerful tool 
  to perform accurate studies of  light nuclei for g.s. (and excited states)
  properties to test nuclear forces

• Room to study further 3NF effects and to add exchange currents for consistent
   EFT calculations

                     

Outlook
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