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Motivation 
✦ Disentangling electromagnetic and isospin-violating 

effects in the pions and kaons is long-standing issue.
✦ Crucial for determining light quark masses.

• Fundamental parameters in Standard Model; important for 
phenomenology.

• Size of EM contributions is largest uncertainty in 
determination of mu/md.

• Reduce error by calculating EM effects on the lattice. 2

mu  [GeV] md  [GeV] mu/md

value 1.9 4.6 0.42

statistics 0.0 0.0 0.00

lattice 

systematics

0.1 0.2 0.01

perturbative 

error

0.1 0.2 --

EM 0.1 0.1 0.04

MILC,          
arXiv:0903.3598 



Background

✦ EM error in mu/md dominated by error in                        , 
whereγindicates the EM contribution.

✦ Dashen (1960) showed that leading order EM splittings 
are mass independent:

✦ Parameterize higher order effects (“corrections to 
Dashen’s theorem”) by 

• Note:     not exactly same as quantity defined by FLAG 
(Colangelo, et al., arXiv:1011.4408), which uses experimental pion 
splittings.  But EM splitting ≈ experimental splitting, since isospin 
violations in pions small.  So difference negligible for us at this 
stage.
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Background
✦  MILC calculations of mu/md after 2004 assumed                 .

•  Came from estimate by Donoghue of range of continuum 
phenomenology, based on:  Bijnens and Prades, NPB 490 (1997) 
239;  Donoghue and Perez, PRD 55 (1997) 7075;  B. Moussallam, 
NPB 504 (1997) 381.

✦ This now seems too large; FLAG (Colangelo, et al., arXiv:
1011.4408) quote                 , based largely on η→ 3π decay  
(but also lattice results by several groups).

✦ Would like to improve on this value with direct lattice 
calculation of EM effects.

✦ Fortunately, Bijnens & Danielsson, PRD75 (2007) 014505  
showed that EM contributions to (mass)2 differences are 
calculable through NLO in          with quenched photons (and 
full QCD). 4
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Background 

✦ Bijnens and Danielsson result applies to any (mass)2 
difference with same valence masses (but different 
valence charges).
• sea quark charges must be same in both cases.

✦ So, e.g.,
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• Difference is not zero, but is calculable at NLO in         , in terms 
of known LO LECs. 
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• Difference is not zero, but is calculable at NLO in         , in terms 
of known LO LECs. 

• Unknown NLO LECs cancel.
• EM quenching error in     only appears at NNLO, should be 

neglible.      
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Background

✦ We would also like to know, e.g., the EM effect on the 
K0 itself.

•  this is:

• where ‘ on a meson indicates that valence charges are set to 0.

• Unfortunately, a controlled calculation of this with quenched 
photons not possible, since sea charges different in two terms.

• We do calculate:

• But r.h.s. differs from what we want by uncontrolled (but 
presumably small) sea quark charge effects: an EM quenching 
error.
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✦ π0 has additional issues.
• Would be costly to simulate true π0, which has EM disconnected 

diagrams even in isospin limit.

• Instead our “π0” is a (mass)2 average of uū and dđ (connected) 
states.

• Since all EM contributions to neutral mesons vanish in chiral limit:
• true                is small anyway.
• disconnected contribution is likely to be still smaller.
• difference                                  is a rough estimate of size of              .

– but still has quenched EM errors, in addition to the effect of disconnected 
diagrams.         

Background 
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Chiral Perturbation Theory
✦ Staggered version of NLO SU(3)           has been   

calculated (C.B. & Freeland, arXiv:1011.3994):

• x,y are the valence quarks. 
• qx, qy are quark charges;  qxy ≡ qx - qy  is meson charge.           
•          is the LO LEC;  ξ is the staggered taste
• σ runs over sea quarks (mu, md, ms, with mu = md ≡ ml )

✦ Errors in                  are ~ 0.3% for charged mesons,     
~1% for neutrals.
• Need NNLO  terms. 
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Chiral Perturbation Theory
✦ For NNLO, staggered           has not been calculated

• Use analytic terms only:  
• Chiral logs small at low mass, where extrapolation is done.
• Chiral logs well approximated by analytic terms in region near ms, 

where they are important.

✦ Can get analytic terms from spurion analysis.

✦ But easier just to write down all possible polynomials in 
mass and charges that satisfy relevant conditions:
• quadratic in qx, qy .

• symmetric when mx ↔ my , qx ↔ qy .

• obey chiral-symmetric constraints when qx = qy , because in that 
case EM terms do not violate symmetry.

• e.g.  (qx2  mx2 + qy2 my2 ) forbidden, since doesn’t go like (mx+my) 
when qx = qy , as required by chiral symmetry.
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MILC EM Project

✦ We have been accumulating a library of dynamical 
QCD plus quenched EM.
• Improved staggered (“Asqtad”) ensembles:

• 2+1 flavors.
• 0.12 fm ≥ a ≥ 0.06 fm.
• ~1000-2000 configs for most ensembles.
• valence quark charges 1, 2, or 3 × physical charges:

✦  ±2/3e, ±4/3e, ±2e for u-like quarks.
✦  ±1/3e, ±2/3e, ±e for d-like quarks.

• Progress has been reported previously: PoS(LATTICE 
2008)127, PoS(Lattice 2010)084, PoS(Lattice 2010)127.
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Asqtad Ensembles
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Asqtad Ensembles
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completed

in progress

2 volumes: mπL=4.5, 6.3
completed but 
not included in 
current analysis. 



Quick Look at Data
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• a = 0.12 fm;                
ml = 0.2 ms.

• two volumes:                 
L = 2.3, 3.1 fm.

• not much evidence of 
finite size effects.

• neutrals are ~smooth 
function of (mx + my); 
charged are not.



Taste Splitting
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• As charges increase, 
EM taste-violating 
effects start to become 
evident.
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Taste Splitting
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• As charges increase, 
EM taste-violating 
effects start to become 
evident.

χPT
• EM taste-violations not 

included in the          .   

• Stick with physical 
charges for now.



Data to Fit
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• All ensembles; charge +1 
mesons (neutrals not 
shown).

• Discretization effects are 
rather large.

• Bar shows expected size 
of L=20,28 finite size 
effect, based on what 
was seen by BMW 
Collaboration.



Finite Size Effect
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• Blow-up of previous plot.

• Our finite size effect 
rather small compared to 
what was seen by BMW 
Collaboration, but not 
necessarily inconsistent:
• 0.35(45) × expected.

• We are increasing 
statistics on L=28 lattice 
(×) to improve test.



Chiral Fit and Extrapolation
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• Only unitary π+ & K+ shown, 
but fit is to all partially 
quenched points, charged 
and neutral.

• Different masses & charges 
for same ensembles are 
highly correlated, leading to 
nearly singular covariance 
matrix.

• This fit is non-covariant 
(neglects correlations).

• Covariant fits generally 
have very poor p values; a 
few of better ones are 
included in systematic error 
estimate.



Chiral Fit and Extrapolation
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• Extrapolate to continuum, 
and set valence, sea 
masses equal. 

• Adjust ms to physical value.

• Keep sea charges = 0.



Chiral Fit and Extrapolation
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• Set sea quark charges to 
their physical values, using 
NLO chiral logs.

• Difference with previous 
case is very small for kaon; 
vanishes identically for 
pion.



Chiral Fit and Extrapolation
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• Neutral dđ-like mesons  
(qx = qy =1/3) for same fit.

• Note difference in scale 
from charged meson plot.

• ~Function of (mx+my) only 
(π  and  K  line up).

• Nearly linear: chiral logs 
vanish for neutrals.



ε = 0.65(7)

Chiral Fit and Extrapolation
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• Now subtract neutral 
masses.

• Perfect agreement of π 
splitting with physical value 
is an accident: 

• systematic errors are larger 
than the difference of purple & 
black lines  (i.e., difference 
between “π0” and π’).  

• Can now read off ratio of π 
and K splittings:



(M2
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γ = 1270(90)(230) MeV2

(M2
K+ −M2

K0)γ = 2100(90)(250) MeV2

ε = 0.65(7)(14)
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Preliminary Results
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uncontrolled EM 
quenching error

• Finite volume errors not yet included:  seem relatively small at present, 
but need to be studied more, and quantified.

• Rough estimate of effect of neglecting disconnected EM diagrams in 
the “π0” might be half of                . 

• Keeping that in mind, and neglecting effects of isospin violation in the π0 ,           
tttttttt                 may be compared with expt. π+-π0 splitting:                    .

(M2
“π0”)

γ

(M2
π+−M2

“π0”)
γ 1261 MeV2



Comparison with Other Work

✦ ε = 0.60(14) [statistics only], Portelli et al. (2010), arXiv:1011.4189.

✦ ε = 0.628(59) [statistics only], Blum et al. (2010), arXiv:1006.1311.

✦ ε = 0.70(4)(8)(??), Portelli et al. (2012), arXiv:1201.2787.

✦ ε = 0.65(7)(14)(?), this work.

?? = discretization errors;   ? = finite volume errors

• Good agreement between the groups.

• Errors still need work...
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• From HISQ lattices.

• Extrapolations omit           
ml = 0.2 ms  ensembles.

• Preliminary analysis, not 
including staggered          .

• Is upward curvature 
believable? 

• Get:

• EM error reduced by 
~factor of 2 (but still the 
main source of error).         

mu/md = 0.508(10)(22)

Preliminary Effect on mu/md
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Other Remarks

✦ Trouble with covariant EM fits is a concern.  
• Only acceptable covariant fits omit a=0.12 fm ensembles; then have large 

statistical errors.

• We are running an additional a=0.06 fm ensemble (and others are planned), 
which should improve this, as well as reducing other systematic errors.

✦ A lot more physics can be done with our current ensembles, in 
particular for baryons, and some of that is in progress. 

• EM quenching effect with be present, though.

✦ We have requested time for a phase-II EM project that would run 
on the MILC HISQ ensembles, which have significantly smaller 
discretization errors.

✦ We are discussing a phase-III project that would generate 
dynamical EM lattices.
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Extra Slides
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ε = 0.65(8)

Chiral Fit and Extrapolation
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• Alternative fit that drops      
a = 0.12 fm; ml = 0.2 ms 
ensemble:
• has smallest mπL (= 3.8) of 

any ensemble; possibly 
larger finite size effects.

• p value better (0.56 instead 
of 0.09), but Dashen ratio 
essentially unchanged: 



Chiral Fit and Extrapolation
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• Neutral dđ-like mesons  
(qx = qy =1/3) for same fit.


