Measuring the charged pion polarizability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ reaction

David Lawrence, JLab
Rory Miskimen, UMass, Amherst
Alexander Mushkarenkov, UMass, Amherst
Elton Smith, JLab

Motivation

- Electro (α_π) and Magnetic (β_π) Polarizabilities represent fundamental properties of the charged pion in the low-energy sector of QCD
- α_{π} and β_{π} are related to the charged pion weak form factors F_{V} and F_{A} :

$$\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha_{EM}}{m_{\pi}F_{\pi}^2} (L_9^r + L_{10}^r) \propto \frac{F_A}{F_V}$$

where the low-energy constants L_{10}^{r} and L_{9}^{r} are part of the Gasser-Leutwyler effective Lagrangian

- Measuring the polarizabilities of the charged pion can be used to test the even-parity part of the Chiral Lagrangian (as opposed to the odd-parity sector which is tested via anomalous processes such as π° -> $\gamma\gamma$)
- Improved measurement of α_{π} – β_{π} would reduce uncertainty contribution of hadronic light-by-light scattering to SM prediction of anomalous magnetic moment of the μ : (g_u-2)/2

(see K. Engel, H. Patel, M. Ramsey-Musolf, arXiv:1201.0809v2 [hep-ph])

• LO O(p4) ChPT calculations give:

$$\alpha_{\pi}$$
 - β_{π} = 5.6 ± 0.2 x 10⁻⁴ fm³

with

$$\alpha_{\pi}$$
 + β_{π} = 0.0 fm³

Donoghue and Holstein, 1989

NLO O(p⁶) corrections are relatively small

$$\alpha_{\pi}$$
 - β_{π} = 5.7 ± 1.0 x 10⁻⁴ fm³

with

$$\alpha_{\pi} + \beta_{\pi} = 0.16 \pm 0.1 \text{ x } 10^{-4} \text{ fm}^3$$

Bürgi 1996, Gasser et al. 2006

Dispersion Relations have been used to as well, but do not agree:

$$\alpha_{\pi}$$
 - β_{π} = 13.0 $_{\mbox{\tiny -1.9}}^{\mbox{\tiny +2.6}}$ x 10 $\mbox{\tiny -4}$ fm $\mbox{\tiny 3}$

$$\alpha_{\pi}$$
 - β_{π} = 5.7 x 10⁻⁴ fm³

*Fil'kov et al. 2006**

Pasquini et al. 2008

Experimental Access

Backgrounds

Experiment will measure reaction:

```
\gamma Pb -> Pb \pi^+\pi^-
```

- Primary background will be coherent ρ^o production followed by $\rho\text{->}\pi\pi$ decay
 - Will use angular distributions to separate Primakoff from coherent ρ^o production (see later slides)
- Currently gathering list of other potentially relevant backgrounds including:
 - σ meson production (angular distributions same as Primakoff)
 - incoherent $\pi^+\pi^-$ production

– ...

Kinematics of Experiment

Linear Polarization of incident photon beam helps distinguish Primakoff from coherent ρ^o production

Relating cross-section to α_{π} – β_{π}

Figure 5. from Pasquini et al. Phys. Rev. C 77, 065211 (2008)

dotted: subtracted DR calculation with α_{π} – β_{π} = 13.0 **dashed**: subtracted DR calculation with α_{π} – β_{π} = 5.7 **solid**: unsubtracted DR calculation with α_{π} – β_{π} = 5.7

Cross-section for $\gamma\gamma \to \pi^+\pi^-$ calculated based on two values of $\alpha_\pi^-\beta_\pi$:

$$\alpha_{\pi}$$
 = 13.0 x 10⁻⁴ fm³ (top, dotted line)

$$\alpha_{\pi}\text{--}\beta_{\pi}$$
 = 5.7 x $10^\text{--4}~fm^3$ (solid and dashed lines)

Cross-section varies by ~10% for factor of 2 variation in α_{π} – β_{π}

Need measurement of $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-)$ at few percent level

The GlueX Detector in Hall-D

New Proposal will use GlueX detector in Hall-D:

- Linearly polarized photon source (~9GeV)
- 2T solenoidal magnetic field ($\delta p/p = \text{few }\%$)
- Drift chambers
- High resolution Time-of-flight detector

barrel time-of calorimeter -flight target diamond wafer target forward drift chambers central drift chambers superconducting magnet is not to scale

Modifications to standard GlueX setup:

- Replace LH2 target with thin Pb target
- Move target upstream to improve low-angle acceptance
- Alternate start-counter?

Detector Rates/Acceptance

- 10⁷ tagged photons/second on 5% radiation length Pb target
- 500 hours of running
- $W_{\pi\pi}$ acceptance down to ~320 MeV/c² (working to improve acceptance to even lower $W_{\pi\pi}$)
- Estimated ~36k* Primakoff events (contrast this with the ~400 events in the acceptance of the MARK-II measurement)

* before detector acceptance

Summary

- Next to leading order ChPT prediction of α_{π} - β_{π} is 5.7 ± 1.0 x 10⁻⁴ fm³
- Previous measurements of α_{π} - β_{π} range from 4.4 52.6 x 10⁻⁴ fm³
- A new proposal to measure the charge pion polarizability α_{π} - β_{π} via the $\gamma\gamma^*$ -> $\pi^+\pi^-$ reaction is being developed that will use the GlueX detector at Jefferson Lab
- Letter of Intent submitted to PAC in June 2012. PAC has encouraged development of full proposal
 - will be submitted in next PAC, spring/summer 2013
- Work is ongoing to identify relevant backgrounds and determine detector acceptance
- An improved measurement of α_π - β_π would improve the SM prediction of the anomalous magnetic moment of the μ : (g $_\mu$ -2)/2

Anomalous magnet moment of the μ : $(g_{\mu}-2)/2$

- Experimental uncertainty of ~ 63 x 10⁻¹¹
- SM calculation has uncertainty of ~ 49 x 10⁻¹¹
 - Hadronic light-by-light (HLBL) scattering is one of two major contributors to SM uncertainty (other is hadronic vacuum polarization)
 - π polarizability is potentially significant contribution to HLBL that is currently omitted from current SM calculation
- g-2 collaboration at Fermilab is preparing a measurement that will reduce experimental uncertainty by a factor of 4
- A measurement of the π polarizability could help reduce the SM uncertainty significantly

For detailed info on planned Fermi-lab experiment, see http://gm2.fnal.gov/public_docs/proposals/Proposal-APR5-Final.pdf