Measuring the charged pion polarizability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ reaction David Lawrence, JLab Rory Miskimen, UMass, Amherst Alexander Mushkarenkov, UMass, Amherst Elton Smith, JLab #### Motivation - Electro (α_π) and Magnetic (β_π) Polarizabilities represent fundamental properties of the charged pion in the low-energy sector of QCD - α_{π} and β_{π} are related to the charged pion weak form factors F_{V} and F_{A} : $$\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha_{EM}}{m_{\pi}F_{\pi}^2} (L_9^r + L_{10}^r) \propto \frac{F_A}{F_V}$$ where the low-energy constants L_{10}^{r} and L_{9}^{r} are part of the Gasser-Leutwyler effective Lagrangian - Measuring the polarizabilities of the charged pion can be used to test the even-parity part of the Chiral Lagrangian (as opposed to the odd-parity sector which is tested via anomalous processes such as π° -> $\gamma\gamma$) - Improved measurement of α_{π} – β_{π} would reduce uncertainty contribution of hadronic light-by-light scattering to SM prediction of anomalous magnetic moment of the μ : (g_u-2)/2 (see K. Engel, H. Patel, M. Ramsey-Musolf, arXiv:1201.0809v2 [hep-ph]) • LO O(p4) ChPT calculations give: $$\alpha_{\pi}$$ - β_{π} = 5.6 ± 0.2 x 10⁻⁴ fm³ with $$\alpha_{\pi}$$ + β_{π} = 0.0 fm³ Donoghue and Holstein, 1989 NLO O(p⁶) corrections are relatively small $$\alpha_{\pi}$$ - β_{π} = 5.7 ± 1.0 x 10⁻⁴ fm³ with $$\alpha_{\pi} + \beta_{\pi} = 0.16 \pm 0.1 \text{ x } 10^{-4} \text{ fm}^3$$ Bürgi 1996, Gasser et al. 2006 Dispersion Relations have been used to as well, but do not agree: $$\alpha_{\pi}$$ - β_{π} = 13.0 $_{\mbox{\tiny -1.9}}^{\mbox{\tiny +2.6}}$ x 10 $\mbox{\tiny -4}$ fm $\mbox{\tiny 3}$ $$\alpha_{\pi}$$ - β_{π} = 5.7 x 10⁻⁴ fm³ *Fil'kov et al. 2006** Pasquini et al. 2008 #### **Experimental Access** #### Backgrounds Experiment will measure reaction: ``` \gamma Pb -> Pb \pi^+\pi^- ``` - Primary background will be coherent ρ^o production followed by $\rho\text{->}\pi\pi$ decay - Will use angular distributions to separate Primakoff from coherent ρ^o production (see later slides) - Currently gathering list of other potentially relevant backgrounds including: - σ meson production (angular distributions same as Primakoff) - incoherent $\pi^+\pi^-$ production **–** ... #### **Kinematics of Experiment** ### Linear Polarization of incident photon beam helps distinguish Primakoff from coherent ρ^o production #### Relating cross-section to α_{π} – β_{π} Figure 5. from Pasquini et al. Phys. Rev. C 77, 065211 (2008) **dotted**: subtracted DR calculation with α_{π} – β_{π} = 13.0 **dashed**: subtracted DR calculation with α_{π} – β_{π} = 5.7 **solid**: unsubtracted DR calculation with α_{π} – β_{π} = 5.7 Cross-section for $\gamma\gamma \to \pi^+\pi^-$ calculated based on two values of $\alpha_\pi^-\beta_\pi$: $$\alpha_{\pi}$$ = 13.0 x 10⁻⁴ fm³ (top, dotted line) $$\alpha_{\pi}\text{--}\beta_{\pi}$$ = 5.7 x $10^\text{--4}~fm^3$ (solid and dashed lines) Cross-section varies by ~10% for factor of 2 variation in α_{π} – β_{π} Need measurement of $\sigma(\gamma\gamma \rightarrow \pi^+\pi^-)$ at few percent level #### The GlueX Detector in Hall-D #### New Proposal will use GlueX detector in Hall-D: - Linearly polarized photon source (~9GeV) - 2T solenoidal magnetic field ($\delta p/p = \text{few }\%$) - Drift chambers - High resolution Time-of-flight detector # barrel time-of calorimeter -flight target diamond wafer target forward drift chambers central drift chambers superconducting magnet is not to scale #### Modifications to standard GlueX setup: - Replace LH2 target with thin Pb target - Move target upstream to improve low-angle acceptance - Alternate start-counter? #### Detector Rates/Acceptance - 10⁷ tagged photons/second on 5% radiation length Pb target - 500 hours of running - $W_{\pi\pi}$ acceptance down to ~320 MeV/c² (working to improve acceptance to even lower $W_{\pi\pi}$) - Estimated ~36k* Primakoff events (contrast this with the ~400 events in the acceptance of the MARK-II measurement) * before detector acceptance #### Summary - Next to leading order ChPT prediction of α_{π} - β_{π} is 5.7 ± 1.0 x 10⁻⁴ fm³ - Previous measurements of α_{π} - β_{π} range from 4.4 52.6 x 10⁻⁴ fm³ - A new proposal to measure the charge pion polarizability α_{π} - β_{π} via the $\gamma\gamma^*$ -> $\pi^+\pi^-$ reaction is being developed that will use the GlueX detector at Jefferson Lab - Letter of Intent submitted to PAC in June 2012. PAC has encouraged development of full proposal - will be submitted in next PAC, spring/summer 2013 - Work is ongoing to identify relevant backgrounds and determine detector acceptance - An improved measurement of α_π - β_π would improve the SM prediction of the anomalous magnetic moment of the μ : (g $_\mu$ -2)/2 #### Anomalous magnet moment of the μ : $(g_{\mu}-2)/2$ - Experimental uncertainty of ~ 63 x 10⁻¹¹ - SM calculation has uncertainty of ~ 49 x 10⁻¹¹ - Hadronic light-by-light (HLBL) scattering is one of two major contributors to SM uncertainty (other is hadronic vacuum polarization) - π polarizability is potentially significant contribution to HLBL that is currently omitted from current SM calculation - g-2 collaboration at Fermilab is preparing a measurement that will reduce experimental uncertainty by a factor of 4 - A measurement of the π polarizability could help reduce the SM uncertainty significantly For detailed info on planned Fermi-lab experiment, see http://gm2.fnal.gov/public_docs/proposals/Proposal-APR5-Final.pdf