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Outline

) Hard pion ChPT: factorization of leading chiral logarithms
&) Pion vector and scalar form factors for M> < s : dispersive representation
() Elastic contributions (intermediate 2 pions): factorization valid to all orders

) Inelastic contributions: factorization violated at 3 loops (intermediate 4 pions)
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Hard'pion"ChPT

Q) Flynn and Sachrajda (2008)

K — m form factors in SU(2) ChPT: predictions for leading chiral logarithms
even for q2 =0 (i.e. Fr >~ Mgk/2)

@ Bijnens and Celis (2009), Bijnens and Jemos (2010, 2011)

predictions for leading chiral logarithms in a variety of processes with hard
pions in the final state: K — 7w decays, B — m and D — 7 form factors
at ¢° < ¢2.... . pion form factors Fy. s(s, M?) for Mﬁ < s



vector and'scalar'pion‘tform ftactors

<) Hard pion ChPT predicts that, for M2/s < 1, the
factorizes from the energy dependence in the chiral limit:

Fy.s(s, M?) = Fy (s) [1 +avs L} +O(M?)

with

L= M 111%2 M?=M?+0OM*), F?=F+0(M?
(4 F)? s T ’ T

) Expanding the fwo-loop standard SU(2) ChPT result in Bijnens, Colangelo and
Talavera (1998) for M2 /s < 1 one obtains the factorized form predicted by
Hard pion ChPT with






Dispersivejrepresentationjoiftneinks

) Analyfticity :

) Unitarity :

Im F(s) =o(s) F(s)t"(s) + inelastic terms

=N

4M mm partial wave with
o(s) =4/ 1~ the appropriate

S
quantum numbers

two-pion phase space



> Im F(s' .
F(s) =1+ i/ ds TES) i, Fy,s(0) =1
4

e s'(s—s)

) Unitarity :

Im F(s) =o(s) F(s)t"(s) + inelastic terms

) Our notation (diagrammatic definition):

F(s) = FF(S) + Finel ()

, 2 pion infermediate states also for the mm partial wave ?

the only contribution up fto 2 loops



Dispersivejrepresentationjoifthelnes

~ ) Analyticity :

> Im F(s' .
F(s) =1+ i/ PRRLEACH R— Fys(0) =1
4 M2 s'(s" — s)

~ ) Unitarity :

Im F(s) =o(s) F(s)t"(s) + inelastic terms

) ChPT provides a perturbative solution to the dispersion relation,
allows us to argue recursively applying the chiral counting:

one loop \)- .(./ tree level

Im F& (s [tm)* + F?(5)t@ (s )}



Dispersivejrepresentationjoifthelnes

~ ) Analyticity :

> Im F(s' .
F(s) =1+ i/ PRRLEACH R— Fys(0) =1
4 M2 s'(s" — s)

~ ) Unitarity :

Im F(s) =o(s) F(s)t"(s) + inelastic terms

) ChPT provides a perturbative solution to the dispersion relation,
allows us to argue recursively applying the chiral counting:

ImF(z) o(s)t (2)*( )

loo
/ one loop
two loops\ - _+ F)(5)1®(s)]



Dispersivejrepresentationjoijtheines

) Analyfticity :

> Im F(s' .
F(s) =1+ i/ PRRLEACH R— Fys(0) =1
4 M2 s'(s" — s)

) The leading chiral logarithms can arise :

1. from an integrand which does not contain a log of the pion mass and this
is produced by the integration over s’

2.if the integrand itself contains a chiral log



rationi(EEAS I G)

Chiraljiogsifromintes

) Produced at the lower integration boundary s ~ AM? -
use standard ChPT to analyze the integrand for s~ M?* < s

o0 / o0 /
F(s)zl—l—E/ ds’ Im F(s') :1—|—£/ ds’ o(5) (01M2—|—023’+C’)(p4))

T Jamz  S'(s —s) T Jamz  S'(8'—3)

) The numerical constants c¢; and ¢y are related to the leading chiral
contributions to the mm scattering lengths and effective ranges

~ ) The leading chiral logarithm generated by the dispersive integration is

167TF2 (Cl — 262)L —_— Oévst

in agreement with Bijnens, Colangelo, Talavera (1998), Bijnens and Jemos (2011)



randi(ELCASHNC)

Chicaljiogsiinichelntes
) Conftribution to the form factors at 2 loops :

Im F& (s) = o(s) [t<4>*(s) + F®)(g) t<2>(s)}

F®(5)1? () = (ﬁ%) + aL) 7 (5) + O(M?)

{0 (s) = 1Y (s) + BsL + O(M?)

) Using Roy equations for i partial waves, we show that 3 = 0 , which implies
that factorization is valid up to 2 loops :

F(s) = (1 + F@)(s)) (1+al) +FY(s) + O(M?) + 0%°)

in agreement with Hard pion ChPT



Chicaljiogsiinithelntegranai(ELEAS i )

) Contribution to the form factors at 2 loops :
Im F& (s) = a(s) [t<4>*(s) + F®)(s) t(2)(s)}

F®(5)1? () = (F<2>(s) + aL) 7 (5) + O(M?)

{0 (s) = 1Y (s) + BsL + O(M?)

) Using Roy equations for nim partial waves, we show that 3 = 0 , which implies
that factorization is valid up to 2 loops

) By induction, we prove that all terms s” 'L in t*")(s) are absent:
the elastic part (subclass of diagrams: 2 pion intermediate states) of
the form factors factorizes to all orders in the chiral counting



INEldASTICICONTHIDUTIONSItotN e R

) Start with 4 intermediate pions (3-loop diagrams)

s [ Im Fipe(s') 1
Fine — d / I ine — 3 : T " y
](S) - /16]\472r S S,(S/ — 8) , m Fj 1(5) 9 /dq)4(87p17p27p37p4) F4 T67T

) For the scalar form factor:

g

) Chiral logs are produced by infegrations over intermediate momenta with
pion-mass-dependent boundaries



InelasticicontributionsjtojtnejL R

) Start with 4 intermediate pions (3-loop diagrams)

T

s [ Im Fie (s 1 .
Final(s) = —/ ds' —— () , Im Finai(s) = = [ d®a(s;p1,p2,03,p4) Far - T,
16 M2 s'(s" = s) 2

) For the scalar form factor:

g

—J Analytical results for the chiral limit values and coefficients of the leading
chiral log for graphs (a), (b), (c), (d) and numerical results for (e), (f) and (g)



INEIASTIGCICONTHIDUTIONSItOthE) IR

) Factorization is not valid at three loops:

F(s) = (14 F () + F(s)) (1 +aL) + L+F%(s)+ 002 +0p®)
with
Qinel (8) = [c(ﬂz) 5% (m “; + m>] (4;;)4 ,  §=-0.53+0.05

) The coefficient of the leading chiral log is not universal

) For values of v/s which are not small compared to A, the three-loop
contribution is not suppressed compared to one and two loops
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F(s) = (14 F7 () + FV(5)) (1 +aL) + oo (s L+ F 7 (5) + O(M?) + O )
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The 2-loop scalar FF in the chiral limit is extracted from Bijnens, Colangelo, Talavera (1998)
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onjiscalargeiac

F(s) = (14 F7 () + FV(5)) (1 +aL) + oo (s L+ F 7 (5) + O(M?) + O )
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The 2-loop scalar FF in the chiral limit is extracted from Bijnens, Colangelo, Talavera (1998)



Conclusions and outliook

@) Factorization of leading chiral logs in the pion form factors for Mﬁ < S

(4

Dispersion relations and application of chiral counting: recursive analysis

(

We show how factorization emerges at two loops and is valid for a whole
subclass of diagrams to all orders (with 2 intermediate pions)

0

Our calculation at 3 loops shows that factorization is broken by multipion
contributions, which generate new leading chiral logs

0

Factorization could be valid to a good approximation only if one remains in the
low-energy regime, with very small quark masses

@) Future work: extension of our analysis to heavy-light form factors



Additional slides




CNIKAIJIOZSIORIAS)

) For asymptotically large values of s,

Fy(s) = 1= / 0z dy T(2,y, 3) 6 () () X [1 + O(ADp /s, M2/5)

S

Brodsky and Lepage (1980)

) The leading chiral log is given just by the one in I
Chen and Stewart (2004)

) Hence the leading chiral log does factorize for s > AQCD but ay = —2
while Hard pion ChPT predicts ay = —1 (valid only in the low-energy regime)



