
A scrutiny of hard pion chiral 
perturbation theory

Massimiliano Procura

Introduction Dispersion relations Lattice Conclusions

Dispersive treatment of η → 3π

Gilberto Colangelo

Albert Einstein Center for Fundamental Physics

Quark Confinement, Madrid, August 30, 2010
7th Workshop on Chiral Dynamics, JLab, Newport News, August 2012



Outline

Hard pion ChPT: factorization of leading chiral logarithms   

Pion vector and scalar form factors for            : dispersive representation

Elastic contributions (intermediate 2 pions): factorization valid to all orders

M2
π � s

Inelastic contributions: factorization violated at 3 loops (intermediate 4 pions)

G. Colangelo, MP, L. Rothen, R. Stucki and J. Tarrús Castellà
                         arXiv: 1208.0498



Hard pion ChPT

Flynn and Sachrajda (2008)

          form factors in SU(2) ChPT: predictions for leading chiral logarithms 
even for          (i.e.                 )q2 = 0 Eπ �MK/2
K → π

Bijnens and Celis (2009), Bijnens and Jemos (2010, 2011)

predictions for leading chiral logarithms in a variety of processes with hard 
pions in the final state:             decays,           and           form factors
at              , pion form factors                for            

K → ππ B → π D → π
q2 < q2

max M2
π � sFV,S(s, M2

π)



Vector and scalar pion form factors

Hard pion ChPT predicts that, for              , the leading chiral logarithm 
factorizes from the energy dependence in the chiral limit: 

M2
π/s� 1

FV,S(s, M2) = FV,S(s)
�
1 + αV,S L

�
+O(M2)

L ≡ M2

(4πF )2
ln

M2

s
, M2

π = M2 +O(M4) , F 2
π = F +O(M2)

with 

Expanding the two-loop standard SU(2) ChPT result in Bijnens, Colangelo and 
Talavera (1998) for              one obtains the factorized form predicted by 
Hard pion ChPT with

M2
π/s� 1

αS = −5
2

, αV = −1



Quantitative explanation of this factorization property ?

Still valid beyond two loops ?



Dispersive representation of the FFs 

Analyticity :  

F (s) = 1 +
s

π

� ∞

4M2
π

ds�
Im F (s�)
s�(s� − s)

FV,S(0) = 1

σ(s) =

�
1− 4M2

π

s

with 

Unitarity :  

Im F (s) = σ(s) F (s) t∗(s) + inelastic terms

two-pion phase space

ππ partial wave with 
the appropriate 
quantum numbers



Dispersive representation of the FFs 

Analyticity :  

Unitarity :  

Im F (s) = σ(s) F (s) t∗(s) + inelastic terms

Our notation (diagrammatic definition):  

F (s) = Fel(s) + Finel(s)

2 pion intermediate states also for the ππ partial wave

the only contribution up to 2 loops

F (s) = 1 +
s

π

� ∞

4M2
π

ds�
Im F (s�)
s�(s� − s)

FV,S(0) = 1with 



Dispersive representation of the FFs 

Analyticity :  

Unitarity :  

Im F (s) = σ(s) F (s) t∗(s) + inelastic terms

ChPT provides a perturbative solution to the dispersion relation,
allows us to argue recursively applying the chiral counting:  

Im F (4)(s) = σ(s)
�
t(4)∗(s) + F (2)(s) t(2)(s)

�
Im F (2)(s) = σ(s) t(2)∗(s)

Introduction
Factorization of leading chiral logarithms

Inelastic contributions
Final remarks

Chiral logs in the integrand

A chiral log in the integrand (absorptive part) generates one in the
dispersive part. Analyze this order by order:

ImF
(2)(s) = σ(s)t(2)(s)

ImF
(4)(s) = σ(s)

�
t
∗(4)(s) + F

(2)(s)t(2)(s)
�

...
...

t(2)(s) is a polynomial ⇒ no chiral logs
t(4)(s) = t̄(4)(s) + βsL+ O(M2

π)

Performing the dispersive integral

F
(2)(s) = F̄

(2)(s) + αL+O(M2
π)

F
(4)(s) = F̄

(4)(s) + αL · F̄
(2)(s) +

βLs

π
ln

�
Ω2

−s

�
+O(M2

π)
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tree level one loop 

F (s) = 1 +
s

π

� ∞

4M2
π

ds�
Im F (s�)
s�(s� − s)

FV,S(0) = 1with 
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one loop 
two loops 

F (s) = 1 +
s

π
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π
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Im F (s�)
s�(s� − s)

FV,S(0) = 1with 



Dispersive representation of the FFs 

Analyticity :  

The leading chiral logarithms can arise :  

1. from an integrand which does not contain a log of the pion mass and this 
is produced by the integration over s’ 

2. if the integrand itself contains a chiral log

F (s) = 1 +
s

π

� ∞

4M2
π

ds�
Im F (s�)
s�(s� − s)

FV,S(0) = 1with 



Chiral logs from integration (ELASTIC)

Produced at the lower integration boundary              : s� ∼ 4M2
π

use standard ChPT to analyze the integrand for s� ∼M2 � s

F (s) = 1 +
s

π

� ∞

4M2
π

ds�
Im F (s�)
s�(s� − s)

= 1 +
s

π

� ∞

4M2
π

ds�
σ(s�)

s�(s� − s)

�
c1 M2 + c2 s� +O(p4)

�

The numerical constants    and    are related to the leading chiral 
contributions to the ππ scattering lengths and effective ranges 

c1 c2

The leading chiral logarithm generated by the dispersive integration is

16πF 2 (c1 − 2 c2) L ≡ αV,S L

αS = −5
2

, αV = −1

in agreement with Bijnens, Colangelo, Talavera (1998), Bijnens and Jemos (2011)



Chiral logs in the integrand (ELASTIC)

Contribution to the form factors at 2 loops :

Im F (4)(s) = σ(s)
�
t(4)∗(s) + F (2)(s) t(2)(s)

�

F (2)(s) t(2)(s) =
�
F

(2)(s) + αL
�

t
(2)(s) +O(M2)

t(4)(s) = t
(4)(s) + β sL +O(M2)

Using Roy equations for ππ partial waves, we show that          , which implies
that factorization is valid up to 2 loops :

β = 0

F (s) =
�
1 + F

(2)(s)
�

(1 + αL) + F
(4)(s) +O(M2) +O(p6)

in agreement with Hard pion ChPT



Chiral logs in the integrand (ELASTIC)

Contribution to the form factors at 2 loops :

β = 0

By induction, we prove that all terms           in           are absent: 
the elastic part (subclass of diagrams: 2 pion intermediate states) of 
the form factors factorizes to all orders in the chiral counting

sn−1L

Im F (4)(s) = σ(s)
�
t(4)∗(s) + F (2)(s) t(2)(s)

�

F (2)(s) t(2)(s) =
�
F

(2)(s) + αL
�

t
(2)(s) +O(M2)

t(4)(s) = t
(4)(s) + β sL +O(M2)

t(2n)(s)

Using Roy equations for ππ partial waves, we show that          , which implies
that factorization is valid up to 2 loops



Inelastic contributions to the DR

Start with 4 intermediate pions (3-loop diagrams)

Finel(s) =
s

π

� ∞

16M2
π

ds�
Im Finel(s�)
s�(s� − s)

(a) (b) (c) (d)

(e) (f) (g)

,

Chiral logs are produced by integrations over intermediate momenta with 
pion-mass-dependent boundaries

For the scalar form factor:

Im Finel(s) =
1
2

�
dΦ4(s; p1, p2, p3, p4) F4π · T ∗

6π



Inelastic contributions to the DR

Start with 4 intermediate pions (3-loop diagrams)

(a) (b) (c) (d)

(e) (f) (g)

Analytical results for the chiral limit values and coefficients of the leading 
chiral log for graphs (a), (b), (c), (d) and numerical results for (e), (f) and (g)

For the scalar form factor:

Finel(s) =
s

π

� ∞

16M2
π

ds�
Im Finel(s�)
s�(s� − s) , Im Finel(s) =

1
2

�
dΦ4(s; p1, p2, p3, p4) F4π · T ∗

6π



Inelastic contributions to the DR

Factorization is not valid at three loops:

F (s) =
�
1 + F

(2)(s) + F
(4)(s)

�
(1 + αL) + αinel(s)L + F

(6)(s) +O(M2) +O(p8)

with

,

The coefficient of the leading chiral log is not universal

For values of     which are not small compared to     the three-loop 
contribution is not suppressed compared to one and two loops

√
s Λχ

αinel(s) =
�
C(µ2) + δ ×

�
ln

µ2

s
+ iπ

��
s2

(4πF )4
δ = −0.53± 0.05
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Pion scalar FF at 3 loops

The 2-loop scalar FF in the chiral limit is extracted from Bijnens, Colangelo, Talavera (1998)
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The 2-loop scalar FF in the chiral limit is extracted from Bijnens, Colangelo, Talavera (1998)
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Pion scalar FF at 3 loops



Conclusions and outlook

Factorization of leading chiral logs in the pion form factors for M2
π � s

Dispersion relations and application of chiral counting: recursive analysis 

We show how factorization emerges at two loops and is valid for a whole 
subclass of diagrams to all orders (with 2 intermediate pions) 

Our calculation at 3 loops shows that factorization is broken by multipion 
contributions, which generate new leading chiral logs

Factorization could be valid to a good approximation only if one remains in the 
low-energy regime, with very small quark masses 

Future work: extension of our analysis to heavy-light form factors



Additional slides



Chiral logs for asymptotic energies

For asymptotically large values of s ,

FV (s) =
F 2

π

s

� 1

0
dx dy T (x, y, s)φπ(x)φπ(y)× [1 +O(Λ2

QCD/s, M2
π/s)]

Brodsky and Lepage (1980)

The leading chiral log is given just by the one in Fπ

Chen and Stewart (2004)

Hence the leading chiral log does factorize for               but                
while Hard pion ChPT predicts             (valid only in the low-energy regime)

s� Λ2
QCD αV = −2

αV = −1


