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Why K`4?

Importance of K`4 decays

Unique information about some low energy constants
of ChPT:

• Lr1, Lr2, Lr3 multiply operators with four derivatives⇒
We need a four-“particle” process

• K`4 like a 2→ 2 scattering

• Happens at low energy, where ChPT is expected to
converge better
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Why K`4?

Importance of K`4 decays

• Provides information on ππ scattering lengths a0
0, a2

0

• Very precisely measured⇒ Test of ChPT
→ Geneva-Saclay, E865, NA48/2

• Kaon physics: High precision at low energy as a key
to new physics?
→ NA62
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Why Dispersion Relations?

Advantages of dispersion relations

• Summation of rescattering

• Connects different energy regions

• Based on analyticity and unitarity⇒ Model
independence

• O(p6) result available, but only useful if LECs are
known
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Kinematics and Matrix Element

K`4 decays

Decay of a kaon in two pions and a lepton pair:

K+(p)→ π+(p1)π−(p2)`+(p`)ν`(pν)

` ∈ {e, µ} is either an electron or a muon.
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Kinematics and Matrix Element

SM tree-level
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Kinematics and Matrix Element

Hadronic part of K`4 as 2→ 2 scattering
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Kinematics and Matrix Element

Form factors

• Lorentz structure allows four form factors in the
hadronic matrix element.〈

π+(p1)π−(p2)
∣∣Vµ(0)

∣∣K+(p)
〉

= − H

M3
K

εµνρσL
νP ρQσ

〈
π+(p1)π−(p2)

∣∣Aµ(0)
∣∣K+(p)

〉
= −i 1

MK
(PµF +QµG+ LµR)

• In experiments, just Ke4 decays are measured, yet.
There, mainly one specific linear combination
F1(s, t, u) of the form factors F and G is accessible.
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Decomposing the Amplitude

Analytic properties

• F1(s, t, u) has a right-hand branch cut in the complex
s-plane, starting at the ππ-threshold.

• Left-hand cut present due to crossing.

• Analogous situation in t- and u-channel.
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Decomposing the Amplitude

Decomposition into functions of a single

variable

Decomposition has been done first for the ππ
scattering amplitude.
→ Stern, Sazdjian, Fuchs (1993)

Define a function that has just the right-hand cut of the
partial wave f0:

M0(s) := P (s) +
s4

π

∫ Λ2

4M2
π

Imf0(s′)

(s′ − s− iε)s′4
ds′
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Decomposing the Amplitude

Decomposition into functions of a single

variable

Define similar functions that take care of the
right-hand cuts of f1 and the S- and P -waves in the
crossed channels.

All the discontinuities are split up into functions of a
single variable. ⇒ Major simplification!
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Decomposing the Amplitude

Decomposition into functions of a single

variable

We neglect:

• Imaginary parts of D- and higher waves,

• High energy tail of dispersion integral from Λ2 to∞.

Both effects are of O(p8).
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Decomposing the Amplitude

Decomposition into functions of a single

variable

Respecting isospin properties, we end up with the
following decomposition:

F1(s, t, u) = M0(s) +
2

3
N0(t) +

1

3
R0(t) +R0(u)

+ (u− t)M1(s)− 2

3

[
t(u− s)−∆Kπ∆`π

]
N1(t)

+O(p8).
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Integral Equations

Dispersion relation

Solution of the Omnès problem:

M0(s) = Ω0
0(s)

{
P (s) +

s3

π

∫ Λ2

4M2
π

M̂0(s′) sin δ0
0(s′)

|Ω0
0(s′)|(s′ − s− iε)s′3

ds′

}
,

with the Omnès function

Ω0
0(s) := exp

{
s

π

∫ ∞
4M2

π

δ0
0(s′)

s′(s′ − s− iε)
ds′

}
.

Similar relations for the other functions.
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Integral Equations

Phase inputs

We need the following phase shifts:

• δ0
0, δ1

1: ππ scattering

• δ1/2
0 , δ1/2

1 , δ3/2
0 : Kπ scattering

(δIl : l – angular momentum, I – isospin)
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Integral Equations

Hat functions

• The left-hand cut is contained in M̂0(s).

• M̂0(s) is given as angular averages of N0, N1, . . .
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Integral Equations

Intermediate summary

• Problem parametrised by five subtraction constants.

• Elastic scattering phase shifts as inputs.

• Energy dependence fully determined by the
dispersion relation.
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Integral Equations

Intermediate summary

• Set of coupled integral equations:
⇒M0(s), M1(s), . . . : DR involving M̂0(s), M̂1(s), . . .

⇒ M̂0(s), M̂1(s), . . . : Angular integrals over M0(s), M1(s), . . .

• System solved by iteration

• Problem linear in subtraction constants⇒ Fit data
with a linear combination of five basic solutions
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Fit to Data

Fit of the S-wave
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Fit to Data

Fit of the S-wave
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Fit to Data

Fit of the S-wave
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Matching to ChPT

Determination of LECs

• Matching the dispersive result to ChPT at
s = t− u = 0: Below threshold, where ChPT
converges better

• Lr1, Lr2 and Lr3 can be determined

26



Preliminary Values for LECs

Determination of LECs - preliminary!

Results of the matching to O(p4) ChPT (µ = 770 MeV)

103Lr1 103Lr2 103Lr3

DR, E865 0.44± 0.41 0.42± 0.34 −2.22± 1.41

DR, NA48/2 0.60± 0.29 0.63± 0.28 −3.16± 1.19

‘fit All’ [*] 0.88± 0.09 0.61± 0.20 −3.04± 0.43

[*] J. Bijnens, I. Jemos, ‘fit All’: → arXiv:1103.5945 [hep-ph]
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Outlook

Work in progress

• Isospin corrections

• Matching to O(p6) ChPT
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Outlook

Summary

• Parametrisation valid up to and including O(p6)

• Model independence

• Full summation of rescattering effects

• Very precise data available

• Advantage over pure ChPT: Matching below
threshold, where ChPT converges better⇒ LECs
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