# Recent Progress in Staggered Chiral Perturbation Theory

Weonjong Lee

Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

Chiral Dynamics 2012, Jlab, 08/07/2012

- 1 Project: 1998 Present
- Staggered Fermion Formulation
  - Staggered Fermion Formulation
- SChPT
  - Staggered Chiral Perturbation Theory
- 4 Appilcation
  - Pion Mass
  - Pion Decay Constants
  - B<sub>K</sub>
  - $\pi \pi$  Scattering Phase Shift
- 5 Summary and Conclusion



2 / 45

# SWME Collaboration 1998 — Present

3 / 45

#### **SWME Collaboration**

- Seoul National University (SNU):
   Prof. Weonjong Lee
   Dr. Jon Bailey and Dr. Nigel Cundy (RA Prof.)
   11 graduate students.
- Brookhaven National Laboratory (BNL):
   Dr. Chulwoo Jung
   Dr. Hyung-Jin Kim (Postdoc)
- University of Washington, Seattle (UW): Prof. Stephen R. Sharpe.
- KISTI: Dr. Taegil Bae (Postdoc).
- University of Arizona, Tucson: Dr. Jongjeong Kim (Postdoc).

### Lattice Gauge Theory Research Center (SNU)

- Center Leader: Prof. Weonjong Lee. (\*\*\*)
- Research Assistant Prof.: Dr. Jon Bailey (\*\*\*)
- Research Assitant Prof.: Dr. Nigel Cundy
- 11 graduate students (\*\*\*)
- Secretary: Ms. Sora Park.
- more details on http://lgt.snu.ac.kr/.

### **Group Photo**



### Staggered Fermion Formulation

7 / 45

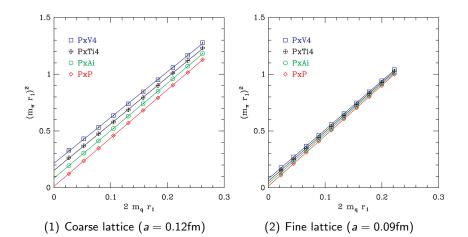
### How to put quarks on the lattice?

- Wilson Fermions:
  - Clover Action: (\*\*)
  - 2 Twisted mass fermions: (\*\*)
  - 3 Domain Wall Fermions: (\*\*\*)
  - Overlap Fermions:
- Staggered Fermions;
  - Asqtad action: (\*)
  - 4 HYP staggered fermions: (\*\*\*)
  - Fat7 staggered fermions:
  - 4 HISQ action: (\*\*\*)

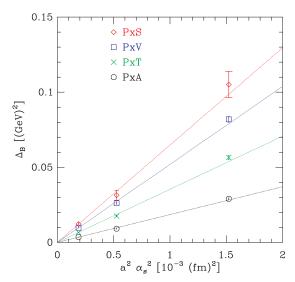
### Cons and Pros for Staggered Fermions

- Advantages (Pros):
  - Preserve part of exact chiral symmetries.
  - Numerically cheapest on the lattice.
  - No residual quark mass (no additive renormalization).
  - Easy to improve with almost no extra cost.
  - Staggered Chiral Perturbation Theory.
- Possess 4 degenerate tastes (pure lattice artifacts).
- Disadvantages (Cons):
  - Born with taste symmetry breaking by construction.
  - 2 Theoretically more challenging to interprete the data.

# Staggered Chiral Perturbation Theory

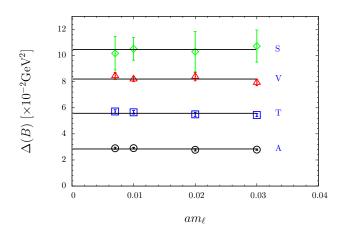

### What is Staggered ChPT?

- ChPT designed to analyze the data produced using staggered fermions.
- Dual expansion in powers of  $p^2 \approx m_q$  and  $a^2$ .
- It incorporates all the taste symmetry breaking effects into the LECs order by order in a perturbative series.


### Birth of Staggered ChPT

- At the leading order of  $p^2 \approx m_q \approx m_\pi^2 \approx a^2$ , we can prove that the pion spectrum respects SO(4) taste symmetry out of the full SU(4) taste symmetry.
- Lee and Sharpe proved it for single flavor case (1999).
- Aubin and Bernard proved it for multiple flavor case (2003).
- Power counting rules are established through the numerical study on the lattice.

### Splittings of Pion Multiplet Spectrum




### Scaling of the Splittings



4□ > 4□ > 4□ > 4 = > = = 99

### Sea quark mass dependence of splittings



• We need to incorporate this effect of pion multiplet splittings into the data analysis.

- We need to incorporate this effect of pion multiplet splittings into the data analysis.
- Staggered fermion formulation introduces mixing with extra operators in addition to the physical mixing. We can also incorporate this effect into the data analysis using SChPT.

- We need to incorporate this effect of pion multiplet splittings into the data analysis.
- Staggered fermion formulation introduces mixing with extra operators in addition to the physical mixing. We can also incorporate this effect into the data analysis using SChPT.
- The systematic tool is the SChPT.

- We need to incorporate this effect of pion multiplet splittings into the data analysis.
- Staggered fermion formulation introduces mixing with extra operators in addition to the physical mixing. We can also incorporate this effect into the data analysis using SChPT.
- The systematic tool is the SChPT.
- Using the SChPT, we obtain the fitting functional form exactly order by order.

### Staggered chiral perturbation theory

#### Power counting

$$\mathcal{O}(\text{a}^2\Lambda_{\text{QCD}}^2) \approx \mathcal{O}(\text{p}^2/\Lambda_\chi^2) \approx \mathcal{O}(\text{m}_\pi^2/\Lambda_\chi^2) \approx \mathcal{O}(\text{m}_q/\Lambda_{\text{QCD}})$$

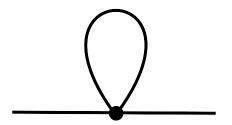
Lee & Sharpe Lagrangian for multiple flavors

[Aubin and Bernard, 2003]

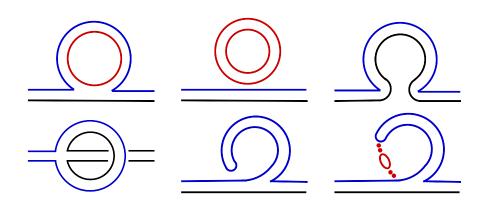
$$\begin{split} \mathcal{L}_{\mathrm{LO}} = & \frac{f^2}{8} \mathrm{Tr} (\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{1}{4} \mu f^2 \mathrm{Tr} (M \Sigma + M \Sigma^{\dagger}) \\ & + \frac{2 m_0^2}{3} (U_I + D_I + S_I)^2 + a^2 \mathcal{V} \end{split}$$

- $M = \operatorname{diag}(m_u, m_d, m_s) \otimes \xi_I$
- $\mathcal V$  : taste symmetry breaking potential [Lee and Sharpe, 1999]

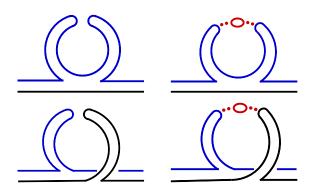
$$\begin{array}{ccc} SO(4)\times SU(4)_{\mathcal{T}} & \xrightarrow{a\neq 0} & SW_{4,\mathrm{diag}} \\ & \subset & & SO(4)\times SO(4)_{\mathcal{T}} \end{array}$$


# Application of SChPT




# Pion Mass (Quark Mass)




### Pion Flow Diagrams



### Quark Flow Diagrams (1)



### Quark Flow Diagrams (2)



#### Results at NLO

• Pion self energy:

$$egin{aligned} M_{\pi_F}^2 &= m_{\pi_F}^2 + \Sigma(m_{\pi_F}^2) + ext{NNLO} \ \Sigma(p^2) &= rac{1}{(4\pi f)^2} [\sigma_{ ext{conn}}(p^2) + \sigma_{ ext{disc}}(p^2)] + \sigma_{ ext{anal}}(p^2) \end{aligned}$$

Connected Part:

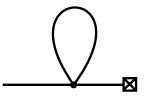
$$\sigma_{\mathsf{conn}} = a^2 \sum_{B} \left( \delta_{BF}^{\mathsf{conn}} \ell(\pi_B^+) + \frac{\Delta_{BF}^{\mathsf{conn}}}{48} [\ell(U_B) + 2\ell(\pi_B^+) + \ell(D_B)] \right)$$

Disconnected Part:

$$\sigma_{\mathsf{disc}} = \frac{1}{12} \left[ 2(-12X_5 + a^4(\Delta_{VF}^{\mathsf{conn}} + \ldots)\delta_V' \left( R_{X\eta}^{\pi}(X_V)\tilde{\ell}(X_V) + \ldots \right) + \ldots \right]$$

<□ > <□ > <□ > < Ē > < Ē > Ē 9 < €

### Progress History (Pion Mass)

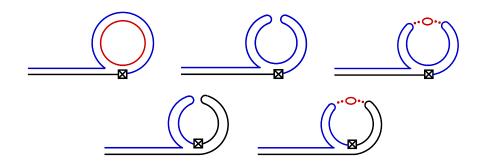

- Goldstone pion sector at NLO : Aubin & Bernard (2003)
- Non-Goldstone pion sectors at NLO : Bailey & Kim & Lee (2012)
- Extension to mixed actions : underway by Yoon & Bailey & Lee (YBL) (2012)
  - \* Example of a mixed action :
  - valence quarks = HYP staggered fermions
  - sea quarks = asqtad staggered fermions
- Results have been used for the numerical study by MILC.
- We plan to apply the mixed action results to the data analysis.



# Pion Decay Constants



### Pion Flow Diagrams




(14) Gunnat Gust

(13) Wavefunction Cont.



### Quark Flow Diagrams (Current Contribution)





#### Results at NLO

#### • Example:

- Pion decay constant for fully dynamical case (xy = ud)
- SU(2) chiral perturbation theory  $(m_u, m_d \ll m_s)$
- 2+1 flavors ( $m_u=m_d=m_\ell 
  eq m_s$ )

$$\begin{split} f_{\pi_F} = & f \left\{ 1 + \frac{1}{32\pi^2 f^2} \left[ -\frac{1}{4} \sum_B g_B \ell(\pi_B) \right. \right. \\ & \left. + (4 - \Theta^{VF}) \left\{ \ell(\pi_V) - \ell(\eta_V) \right\} + (V \to A) \right] \\ & \left. + L_4 \frac{16\mu}{f^2} (2m_\ell + m_s) + L_5 \frac{16\mu}{f^2} m_\ell + a^2 \mathcal{F}_F \right\} \end{split}$$



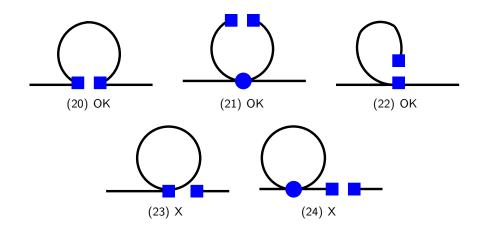
#### Progress Report

- Goldstone Pion Sector: Aubin & Bernard (2003)
- Non-Goldstone Pion Sectors: Yoon & Bailey & Lee (2012)
- Extension to the mixed action: underway by YBL (2012)
- Results have been used for the numerical study by MILC.
- We plan to apply the mixed action results to our data analysis.

# $B_K$ (Indicrect CP Violation)

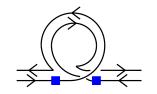


#### $B_K$ definition in standard model


$$B_{K} = \frac{\langle \bar{K}_{0} | [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] | K_{0} \rangle}{\frac{8}{3} \langle \bar{K}_{0} | \bar{s}\gamma_{\mu}\gamma_{5}d | 0 \rangle \langle 0 | \bar{s}\gamma_{\mu}\gamma_{5}d | K_{0} \rangle}$$

$$\hat{B}_{K} = C(\mu)B_{K}(\mu),$$

$$C(\mu) = \alpha_{s}(\mu)^{-\frac{\gamma_{0}}{2b_{0}}} [1 + \alpha_{s}(\mu)J_{3}]$$




### Pion Flow Diagrams for $B_K$




 $B_K$ 

### Quark Flow Diagrams for $B_K$







### SU(2) Results at NLO

•  $B_K$ :  $(m_u = m_d = m_\ell \ll m_s)$ 

$$egin{aligned} B_{\mathcal{K}} &= d_1 Q_1 + d_2 rac{X_P}{\Lambda_{\chi}^2} + d_3 rac{L_P}{\Lambda_{\chi}^2} + \mathsf{NNLO} \ Q_1 &= 1 + rac{1}{32\pi^2 f^2} \Bigg[ (L_\mathsf{I} - X_\mathsf{I}) ilde{\ell}(X_\mathsf{I}) + \ell(X_\mathsf{I}) - 2 \sum_\mathsf{B} au^\mathsf{B} \ell(X_\mathsf{B}) \Bigg] \end{aligned}$$

- $X_P = [m_{\pi}^{xx}(\xi_5)]^2$
- $L_P = [m_{\pi}^{\ell\ell}(\xi_5)]^2$



#### **Progress History**

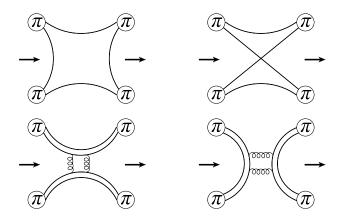
- $B_K$  at NLO : Sharpe & Van de Water (2006)
- Extension to the mixed action : Sharpe (2008)
- BSM operators at NLO: Bailey & Kim & Lee & Sharpe (2012)
- ullet Application to the numerical study : SWME (2010  $\sim$  present)
- The SWME result of  $B_K$  is posted to FLAG officially (2012).

$$\hat{B}_{K} = 0.727 \pm 0.004 ({
m stat}) \pm 0.038 ({
m sys})$$
 $arepsilon_{K} = (1.56 \pm 0.22) \times 10^{-3}$  (Exclusive  $V_{cb}$ )
 $= (1.88 \pm 0.22) \times 10^{-3}$  (Inclusive  $V_{cb}$ )

• We must reduce the errors of  $B_K$  and  $V_{cb}$  simultaneously.

## $\pi - \pi$ Scattering

#### $\pi - \pi$ Scattering and S-matrix


• Five channels of two pion states in staggered fermion formulation:

$$\pi(P) - \pi(P), \quad \pi(A) - \pi(A), \quad \pi(T) - \pi(T), \\ \pi(V) - \pi(V), \quad \pi(S) - \pi(S),$$

- The trouble is that their energy eigenvalues are non-degenerate.
- Recently, Hansen & Sharpe make it possible to study multi-channel scattering problem by modifying the Luscher formula.
- Now, it is possible to study the N=5 multi-channel  $\pi-\pi$  scattering problem on the lattice using staggered fermions.



## Quark Flow Diagrams for $\pi-\pi$ Scattering



### Unitarity Violation by Rooting Technique

- If the SU(4) taste symmetry is exactly conserved, then rooting cannot make a trouble of unitarity violation.
- However, if the SU(4) taste symmetry is broken, then rooting makes a unitarity violation.
- The staggered fermion formulation has taste symmetry breaking by construction.
- Hence, the rooting triggers the unitarity violation for staggered fermions.
- As a consequence, there are two kinds of unitarity violation on the lattice using staggered fermions: one from partially quenched QCD and the other from the rooting.



#### Rooting Technique

• Fermion Determinant of Staggered Fermions:

$$\int [d\psi][dar{\psi}] \exp[\int ar{\psi}(D+m_1)\psi] = \det(D+m_1)$$

- Here, the Dirac operator  $(D + m_1)$  contains 4 copies of degenerate tastes.
- In order to reduce the number of tastes to one, we use the rooting technique in the numerical study.

$$\det(D+m_1)\longrightarrow \left[\det(D+m_1)\right]^{\frac{1}{4}}$$

• However, if the SU(4) taste symmetry is broken, then the rooting causes a unitarity violation since sea quarks and valence quarks have different Dirac operators.

 Weonjong Lee (SNU)
 Lattice QCD
 Chiral Dynamics 2012
 40 / 45

#### How to get around the trouble: SChPT

- SChPT can, in principle, trace the rooting part and the unitarity violation terms.
- Hence, we fit the numerical data to the functional form suggested by SChPT.
- Then, we can remove the unitarity violating terms by hand.
- Then, the remaining part will be unitary, which corresponds to the S-matrix defined by Hansen & Sharpe.
- The SChPT calculation is underway by Yoon & Bailey & Lee.



# Summary

#### Summary of Current Status in SChPT

| physics        | Goldstone | Non-Goldstone | mixed       | numerical |
|----------------|-----------|---------------|-------------|-----------|
| $m_{\pi}^2$    | 0         | 0             | $\triangle$ | 0         |
| $f_{\pi}$      | 0         | 0             | Δ           | 0         |
| $B_K$          | 0         | ×             | 0           | 0         |
| BSM op         | 0         | ×             | 0           | Δ         |
| $\pi - \pi$    | Δ         |               | ×           | Δ         |
| $K \to \pi\pi$ | ×         |               | ×           | ×         |
| $V_{cb}$       | Ō         |               | ×           | O         |

# Sincere apologies for omitting some topics

## Thank you very much !!!