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Why dispersive analyses?

e advent of high-statistics experiments allows for accurate
measurements of decay amplitudes
BES-IIl, WASA-at-COSY, MAMI-B/-C, CLAS@JLAB, CMD, KLOE, ELSA
= need to match this accuracy on the theoretical side

e final-state interactions in hadronic three-body decays play
essential role in precision amplitude analyses

e perturbative approaches (ChPT, NREFT,...): implement
final-state-interactions up to a certain order in a small
power-counting parameter

e goal of dispersion relations: resum effects of hadronic
rescattering to all orders = precise implementation of final-state
Interactions, allows extension to higher energies

e high-accuracy parametrizations of phase-shifts required = now
available in some cases (77, 7K,...)
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Physics case

w/¢p — 3m:

e most simple imaginable system with physical relevance
= P-wave interactions only (neglecting F- and higher waves)
= ideal testing ground for the approach

e large existent (¢: KLOE/CMD-2) and upcoming (w: WASA,
CLAS) data base

e ¢ — 3m: study crossed-channel effects on resonances in the
decay region

0
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Physics case

w/¢p — 3

e most simple imaginable system with physical relevance
= P-wave interactions only (neglecting F- and higher waves)
= ideal testing ground for the approach

e large existent (¢: KLOE/CMD-2) and upcoming (w: WASA,
CLAS) data base

e ¢ — 3m: study crossed-channel effects on resonances in the
decay region

T

w/¢ — wO~* transition form factors:
e can help to constrain pseudoscalar pole
terms (7, n, ') in hadronic light-by-light

e strength determined by decay 7% — ~*~*: 0
doubly-virtual form factor £ o .. (M2, ¢7, q3)

e for fixed isoscalar photon virtuality: can extract
Frompns (M2, g7, MZ) from w — 700~
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The framework: fundamentals

e was applied in n — 37 decays before, but also ' — nrmw, Kyq, ...
possible Anisovich, Leutwyler '98; Lanz; Stoffer (see talks at CD12 on tuesday)
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The framework: fundamentals

e was applied in n — 37 decays before, but also ' — nrmw, Kya, . ..
possible Anisovich, Leutwyler '98; Lanz; Stoffer (see talks at CD12 on tuesday)

e Integral equations based on fundamental principles: unitarity,
analyticity and crossing symmetry

e assume elastic wr rescattering

S.P. Schneider, Dispersive analysis of w / ¢ —> 37 decays and the w / b — 71'0 % * transition form factor — p.5



The framework: fundamentals

e was applied in n — 37 decays before, but also ' — nrmw, Kya, . ..
possible Anisovich, Leutwyler '98; Lanz; Stoffer (see talks at CD12 on tuesday)

e Integral equations based on fundamental principles: unitarity,
analyticity and crossing symmetry

e assume elastic wr rescattering
e decay amplitude can be decomposed according to:
w/¢p — 3w F(s,t,u) = F(s)+ F(t) + F(u)
s—|—t—|—u:]\43/(/54—3]\472r = 350

> F(s) functions of one variable with only a right-hand cut

> decomposition exact only if [ > 3 partial waves are real

0

S.P. Schneider, Dispersive analysis of w / ¢ —> 377 decays and the w / b — Ty * transition form factor — p.5



From unitarity to integral equations

e from unitarity:

disc F(s) = 2i (s — 4 M2){F(s) } sin 0t (s) e ()

e simple = solved by an Omnes function €(s) Omnes '58

o0

F(s) = P(s)Qs) ,  Qs) :eXp{i / dS/S’((S;’(S—/L)}
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From unitarity to integral equations

e from unitarity:

disc F(s) = 2i (s — 4 M2){F(s) + F(s)} sin 0} (s) e 1)
e Unitarity relation gets more complicated for three-particle

final states

e crossed-channel scattering between s-, t-, and u-channel
= inhomogeneities F(s): angular integration over F(s)

e correct analytic continuation necessitates path deformation of
the angular integral

0
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Integral equations

e Solution to:
disc F(s) = 2i0(s — 4 M2){F(s) + F(s)} sin 6] (s) e 01

F(s) = Q(s){a + % /2 Cis// |QS(1§)5’§5/_>‘7;(5)%) }

Niecknig, Kubis, SPS 12
Anisovich, Leutwyler '98

Khuri, Treiman '60; Aitchison, Pasquier '66
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Integral equations

e Solution to:

disc F(s) = 2i0(s — 4 M*){F(s) +]}(3)} sin 97 (s) o101 (s)

e only one subtraction constant in this system

> dynamics (Dalitz plot) do not depend on the specific choice
of this subtraction constant!

> « matched to reproduce the w/¢ — 3x partial width

e §{(s) from phenomenological analyses (Roy equations)

e solve these equations by an iterative numerical procedure

s [ ds sin 5H(s"F(s)
i /3 |Q(s’)](s’—s—ie)}

AM?2

Niecknig, Kubis, SPS 12
Anisovich, Leutwyler '98

Khuri, Treiman '60; Aitchison, Pasquier '66

Caprini et al. (in preparation), Garcia-Martin et al. '11
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w /¢ — 37 Dalitz plot

. . L 3(sp—s) . V3(t—u) i
e normalized Dalitz plot (y = Ay (My 33 T = 2MV(MV—3M7T))'
W — 37 : ¢ — 3T
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e normalized Dalitz plot is independent of the subtraction constant!

e w Dalitz plot is relatively smooth
e ¢ Dalitz plot clearly shows p resonance bands

e SO0 what are the effects of crossed-channel rescattering?

0
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Crossed-channel effects in w — 37

o shown is | Frun(s, t, u)[2/|Fr_|?
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e left scale: « fixed to decay rate before iteration
> partial width increased by about 16%

e right scale: « fixed to decay rate before and after iteration
> significant part of changes absorbed in overall normalization
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Crossed-channel effects in @ — 37

e shown is |Ffull(87t7u)’2/|'r]3':0|2

08 | | | | | | | | | 11
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e left scale: « fixed to decay rate before iteration
> partial width decreased by about 20%

e right scale: « fixed to decay rate before and after iteration
> significant part of changes absorbed in overall normalisation
> p bands relatively unaffected
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Comparison with experiment

Compare to experimental ¢ — 37 data:
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X

“Fit” results KLOE:

A

F=0 full, once-subtracted

x?/ndof 1.71...2.06 1.17...1.50

6]

S.P. Schneider, Dispersive analysis of w / ¢ — 37 decays and the w / b — 7 'y* transition form factor — p. 11



Comparison with experiment

Compare to experimental ¢ — 37 data:

N pmemennm——— I
0.4 . 1.4 04
. -0.2 : E 4 08 - 0.2
-0.4 H4F 406 04
-0.6 4 F 4 04 -0.6
-0.8 4 F 402 0.8
_1—1 —(;.8 —(I)46 —(;.4 —(I).2 :) OIA2 0{4 OI.6 OI.S l_ 0 -1-1 -()I.S -OI.6 -OI.4 -OI.2 I0 OI.2 OI.4 OI.6 ()I.8 1_ 0
“FIt” results KLOE:
F=0 full, once-subtracted
x?/ndof 1.71...2.06 1.17...1.50

e looks ok — but certainly not perfect

e add additional subtraction = suppress contributions from higher
energies

(6]
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Two subtractions

e twice-subtracted dispersion relation

F(s) = Q(s ){a—l—bs—l—— / s |Qsm 52( )i(j/ze)}
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Two subtractions

e twice-subtracted dispersion relation

F(s) = Q(s) a+b3+—/ ,2|98m51 (") F (") }

— 5 — i€)
4M?2
KLOE CMD-2
Bern Madrid-Cracow Bern Madrid-Cracow
X2/ndof 1.02 1.03 0.96 0.94

b x GeV® 0.97+0.03 0.94£0.03  0.97F715 0.957013

arg b 0.02=+0.03 042£0.03 0.00+=0.16 —-0.18%+0.18

e perfect fits for both data sets = representation respects unitarity,
analyticity, and crossing symmetry

e apparent disagreement between KLOE and CMD-2
= Systematics?
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Prediction of the w — 37 Dalitz plot parameters

e w — 37 Dalitz plot smooth = polynomial parameterisation

| Foo1(2, )7 = |N|2{1 + 200z + 282372 sin 3¢ + 2722 4 202°/? sin Sgb}

ax 10 Bx102 ~yx103 §x 103

84...96 — — —
74...84 24...28 — —
73...81 24...28 3...6 —
74...83 21...24 0...2 7...8

e two Dalitz plot parameters sufficient at 1% accuracy

e compare n — 37 (same 3-fold symmetry):

a=(-31.7£1.6) x 1073 PDG average
B~ —4x107% y~4+1x1073 SPS,Kubis,Ditsche "11
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Transition form factor: unitarity implications

V' 747 transition form factor is dominiated by 77 intermediate
states (v* Is an isovector = no 37 intermediate states):

=- discontinuity of the TFF from unitarity

disc fyo(5) = SO £ (GFVH (), gunle) =4[5 - M2 kopp 74

67/

6]
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Transition form factor: unitarity implications

V' 747 transition form factor is dominiated by 77 intermediate
states (v* Is an isovector = no 37 intermediate states):

=- discontinuity of the TFF from unitarity

= fvz0(s) = fyro(0) + Képp '74

Sy LA
; =)

12702 [ 02 s3/2(s" — s

e [V*(s) pion vector form factor

e fi(s) ! =1 partial-wave amplitude for V' — 3«

e determine fy ,0(0) fromI'y_, o,

6]
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Numerical results: w — 7w°o~*

NAG60 '11
Lepton-G

VMD
Terschliisen et al.
fi(s) = a)(s)

full dispersive

100p NAGO '09 T

| BRI

ATy ro,4 - /ds [1076 GeV—!]
pO [ N w N (63} (o)) ~ [0} ©

‘Fwﬂo(s)‘z

e unable to account for steep rise = pole structure???
e partial-wave amplitude not backed up by w — 37 experiment

(6]
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Numerical results: ¢ — 7y

100 —— 11—

VMD
fi(s) = afl(s) |
once subtracted f;(s)
twice subtracted f1(s)

10}

| Fymo ()]

0 01 02 03 04 05 06 07 08
Vs [GeV]
e measurement extremely helpful = investigate “pole structure”

e partial-wave amplitude backed up by experiment

6]
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Conclusions and outlook

Conclusions...

e dispersion relations are a strong tool to study hadronic
Interactions

e based on fundamental principles of unitarity, analyticity and
crossing symmetry

e application in ¢ — 37 produces promising results
= perfect fit data with two subtractions

e steep rise in w — 7V~* transition form factor cannot be explained
In our framework

e measurement of ¢ — 7%~+* should give insights!
...and Outlook
e shortterm: ' — nrm and DT — K77 in progress

0

S.P. Schneider, Dispersive analysis of w / ¢ — 37 decays and the w / bé — T 'y* transition form factor — p. 17



Spares

6]
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The inhomogeneities F(s)

A 5+ (5) Y 35yt sn7
f@):%/g(s) ds’[1— (2 /js) T ) }]—'(3)

st(s) = %(330 — s+ r(s))

w(6) = | T e Oy PG Oy )P
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The inhomogeneities F(s)

] 5t (5) 0o >
s—(s)

K(s)
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The inhomogeneities F(s)

A 5+ (5) Y 35yt sn7
f@):%/ﬂs) ds’[l—(2 550 + HI(S)

st(s) = %(350 — s+ r(s))

k(s)

S_(8) “Wersafianes

e the vector particle V' is unstable = 3-particle cuts become
manifest in x(s) = generates complex analytic structure
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V — 37 partial-wave amplitude

e partial-wave projection fi(s):

fi(s) = 2/ dz(l — 22) F(s,t,u)

12 — \ \ \ w w w 3.0

o ‘ \ ‘ \ ‘ \ ‘ \ ‘ \ ‘ 0. \ ‘ \ ‘ \ ‘ \ ‘ \ ‘ \ ‘
0.3 0.4 0.5 0.6 0.7 0.8 0.9 05 0.3 04 05 0.6 0.7 0.8 0.9
Vs [GeV] Vs [GeV]

e phase of the partial-wave amplitude does not vanish at threshold

e divergence at pseudo-threshold expected
= does not generate non-analytic structure in the TFF

(6]
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V — 7% branching ratios

e Estimates for the branching ratios:

B(w — mv) = (7.48...7.75) x 1072
B™P(w — 1) = (8.28 £0.28) x 102

B(¢p — %) = (1.28...1.37) x 1073
BP(p — %) = (1.27 £ 0.06) x 10~

e But: integrand of fi 0(0) not very well converging
> benchmark for approximation of two-pion intermediate states

> expected to work better for once-subtracted DR
= s-dependence

> fix fy-0(0) by using I'y _, 70, @S input

0 Y * transition form factor — p. 21
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