Excited state contributions with two pions

Oliver Bär (Humboldt Univ.) and Maarten Golterman (SFSU)

Chiral Dynamics 2012, Jefferson Lab Aug. 6-10, 2012

Motivation

Consider a two-point correlator for an operator P with zero spatial momentum

$$C(t) = \langle P(t)P^{\dagger}(0)\rangle = \sum_{n=0}^{\infty} C_n e^{-E_n t}$$

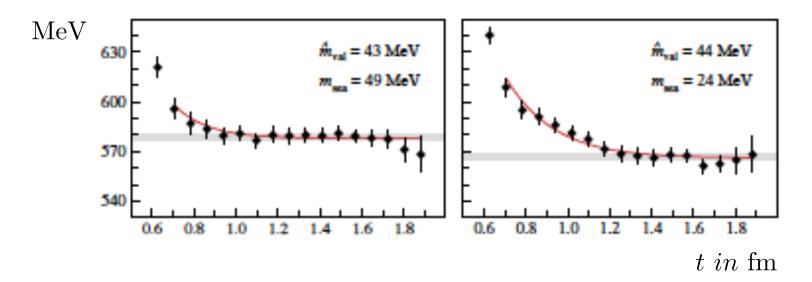
in a finite spatial volume L^3 .

With the ground state a stable particle (e.g. π^+), excited states can correspond to single particle states (e.g. $\pi(1300)$) or multi-particle states (e.g. 3π).

⇒ Need to tell these apart for spectroscopy of excited states.

With light-enough quarks, the first excited state is the ground state plus two pions, with energy $E=E_0+2m_\pi$.

From Del Debbio et al., JHEP 0702 (2007) 056:



Effective mass plots of "valence-meson" mass, held fixed, with two different sea-quark masses (in partially quenched QCD, $m_{val} \neq m_{sea}$).

A good fit was obtained with (K stands for valence meson)

$$M_{eff}(t) = -\frac{d}{dt} \log C(t) = M_K \left(1 + c e^{-(M' - M_K)t} \right) + \dots$$

in which $M'=M_K+2M_\pi$, with " π " made out of sea quarks.

Is this the correct interpretation of the second exponential?

• In a finite spatial volume, one expects that $c\sim 1/L^6$. Three-particle states contribution looks like

$$\frac{1}{L^6} \sum_{p,q,k} \delta_{p+q+k,0} \frac{1}{8E_p^{\pi} E_q^{\pi} E_k^K} |\langle 0|P(0)|\pi(p)\pi(q)K(k)\rangle|^2 e^{-E_{tot}t} + \dots$$

with lowest state having p = q = k = 0.

• In finite volume state with

$$E_p^{\pi} = E_q^{\pi} = M_{\pi} \sqrt{1 + \left(\frac{2\pi}{M_{\pi}L}\right)^2} , \quad p = -q = 2\pi/L$$

is much suppressed: for (typical) $M_\pi L pprox 4$, the square root pprox 2 .

• For light-enough pions, we can calculate c in ChPT, and check! Here we do this in LO ChPT with three light flavors. (Note: partial quenching not relevant, as long as $m_{sea} < m_{val}$.)

ChPT results (leading order):

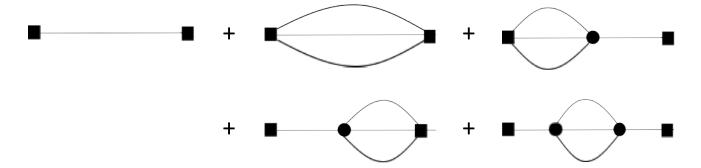
Take $P=\overline{d}\gamma_5 u$ then

$$C(t) = -\frac{f^2 B^2}{2M_{\pi}} e^{-M_{\pi}t} \left[1 + \frac{45}{512(fL)^4 (M_{\pi}L)^2} e^{-2M_{\pi}t} \right]$$

Note that this contains the leading 3-particle state only, with two additional pions at rest; there are other states with non-zero momentum particles, additional kaon pairs, etc.

At this order $f=f_\pi=f_K$ (normalization: $f_\pi=93$ MeV), B is leading-order Gasser-Leutwyler constant.

Diagrams:



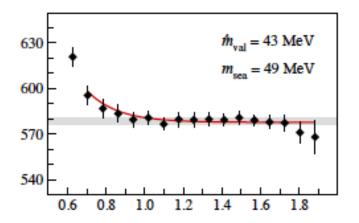
(squares denote the operator P, circles denote strong vertices)

Power counting: $m_\pi \sim m_K \sim p \sim 1/L \sim \pi_a$

With this power counting all other diagrams are higher order.

Back to Del Debbio et al.:

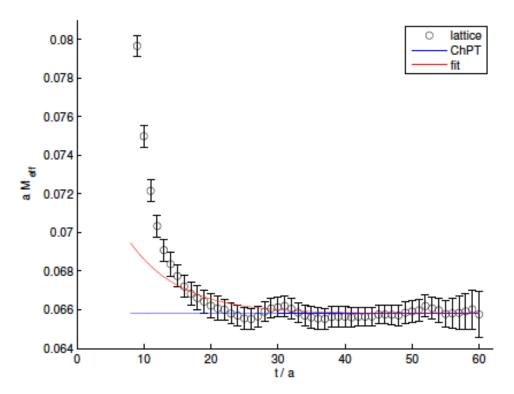
From JHEP 0702 (2007) 056, 082: ~fL pprox 1.0 , $M_\pi L pprox 5.9$



For these parameter values $\ c \approx 5 \times 10^{-3}$, much to small to explain the curve, for which c would have to be more than two orders of magnitude larger.

Note that $\,M_\pi \approx 620\,$ MeV . Similar conclusion for the plot with lower $M_\pi \approx 420\,$ MeV .

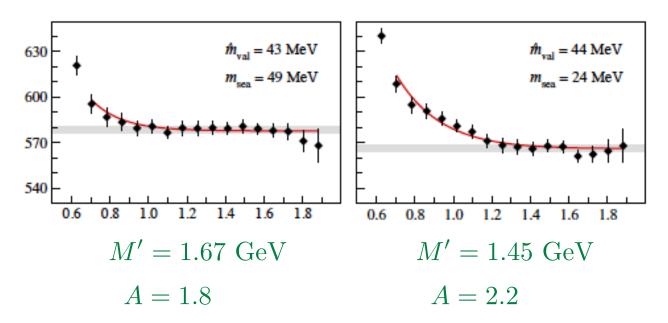
At a lighter sea-pion mass ($M_{\pi}=270\,$ MeV), the \overline{ALPHA} collaboration (Fritzsch et al., arXiv:1205.5380) produced new data for pion correlator:



Here $c=1.6\times 10^{-3}$, again too small to explain the data (blue curve). For a fit (red curve) we need again two orders of magnitude more.

Try with single-particle excited state: $M_{eff} = M \left(1 + A e^{-(M'-M)t} \right)$ (Note: speculation!)

with M' the mass of the equivalent of the $\pi(1300)$.



If we parameterize $M'=M_0'+b\,M_\pi^2\,$ and $A=A_0+a\,M_\pi^2$,

then $M'(M_{\pi} = 140 \text{ MeV}) = 1.27 \text{ GeV}$, $b = 1.1 \text{ GeV}^{-1}$, $a = -1.9 \text{ GeV}^{-2}$.

Conclusions

- In a given channel, the ground-state energy and the energy of a state with two extra pions are related by chiral symmetry, hence can be calculated in ChPT.
- In a finite spatial volume, the state with two extra pions at rest is suppressed by the square of the volume. Suppression is of order $(f_\pi L)^{-4}(M_\pi L)^{-2}$ times a numerically small factor $\sim 1/10$ (even smaller for the axial current). Can be ignored in analysis of current lattice data.
- We considered states created by the pseudo-scalar density and axial current, but observations should generalize to other channels.