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Precision lattice QCD calculations

High-precision calculations of fπ,... in the last decade

Precision calculations of mN,... in the last few years

Well-controlled pion matrix elements are possible now

Intense work on much harder nucleon matrix elements
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Lattice QCD can do high-precision calculations
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first precision calculations were completed in 2003

there is a notable absence of any baryonic properties

averages of results from arXiv:1110.0016 and http://latticeaverages.org/ 2/15



.
Precision baryon physics is just recently feasible
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first calculation in 2009 due to challenge of baryons

example of computational thresholds in lattice QCD

BMW collaboration, Science, arXiv:0906.3599, see ETMC and CP-PACS too 3/15
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Pion form factor, simplest of the harder quantities

space-like form factor is calculable in Euclidean space

〈π, p|V em
µ |π, p′〉 = KµF (Q2) Kµ = pµ + p′µ

F(0) = 1, so focus on the slope or the charge radius

〈r2〉π ≡ 6
dF (Q2)

dQ2

∣∣∣∣∣∣
Q2→0

no renormalization is required but Q2 6= 0 is needed
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Precision calculations are essential

good example matrix element to illustrate the need ...
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to carefully and precisely control all uncertainties
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Pion charge radius
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computational thresholds were not met in early results
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Pion charge radius
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partial control of most uncertainties

could now calculate pion charge radius to about 5%
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Chiral extrapolation of pion charge radius
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illustrates the χPT/LQCD extrapolation strategy
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Pion form factor
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lattice calculation is comparable to the measurements
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Proton form factors are more challenging

proton leads to two vector form factors, F1 and F2

〈N, p|Vµ|N, p′〉 = K1
µF1(Q

2) +K2
µF2(Q

2)

now, charge radius and anomalous magnetic moment

〈r2〉p ≡ 6
dF1(Q2)

dQ2

∣∣∣∣∣∣
Q2→0

κ = lim
Q2→0

F2(Q
2)

no renormalization is required but Q2 6= 0 is needed
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Proton charge radius
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no reliable extrapolation, examine raw lattice results
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Proton charge radius
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nearly physical m
π

calculations nearly to the physical mπ a major triumph
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Proton charge radius

0.05 0.1 0.15 0.2 0.25
m

π

2
  [GeV

2
]

0

0.1

0.2

0.3

0.4

0.5

0.6

<
r2 >

pu-
d   [

fm
2 ]

CODATA
µ-H
HBχPT LO
lattice QCD (QCDSF)
lattice QCD (LHPC)

apparent
disagreement

but well-controlled calculations needed to resolve this
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Proton charge radius
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ln m
π
 divergence

divergence suggests possibly large finite-size effects
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Proton charge radius
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require rule-of-thumb m
π
L > 4

finite-size effects at small mπ may resolve this puzzle

10/15



.

Proton axial coupling should be easier

proton requires two axial form factors, gA and gP

〈N, p|Au−d
µ |N, p′〉 = KA

µ gA(Q
2) +KP

µ gP(Q
2)

now both form factors have non-trivial forward limits

gA = gA(Q
2=0) gP = lim

Q2→0
gP(Q

2)

Q2 6= 0 is not needed for gA, but a finite ZA is required
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Proton axial coupling
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axial coupling has persistently been flat and too low
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Proton axial coupling
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nearly physical m
π

results approaching the physical point are still too low
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Proton axial coupling
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mild apparent discrepancy

but apparent discrepancy is not too large to start with
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Proton axial coupling
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requiring m
π
L > 4

rule-of-thumb mπL > 4 is known to be insufficient here
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Proton axial coupling
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requiring m
π
L > 5

it is known that mπL > 6 may even be necessary here
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Proton parton distributions

GPDs related to generalized form factors Ani, Bni, Cn

〈N, p|Oµν|N, k〉 = KA
µνA20(Q

2) +KB
µνB20(Q

2) +KC
µνC2(Q

2)

like F1 or gA, only An0 has an accessible forward limit

∫ 1

−1
dx x q(x) = 〈x〉 = A20(Q

2=0)

scale-dep. renormalization is needed but Q2 6= 0 is not
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Proton momentum fraction
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long standing trend for 〈x〉u−d to be quite flat in mπ
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Proton momentum fraction
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nearly physical m
π

will return shortly to this result close to physical limit
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Proton momentum fraction
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apparent
disagreement

again, well-controlled calculations needed here too
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Proton momentum fraction
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plateau corrections

corrections by LHPC/ETMC may resolve this puzzle
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Proton momentum fraction
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improved precision

possible curvature but lightest point has mπL = 2.7
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Summary

Well-controlled calculations for the pion are feasible

Intense progress for the nucleon is being made

Apparent conflicts with measurements not justified

Apparent conflicts with χPT not compelling either
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