

Tests of Symmetries with η Decays at WASA-at-COSY

Daniel Coderre Chiral Dynamics Workshop 2012

Properties of the η

- Light pseudoscalar, mass $m_{\eta} = 547.853 \pm 0.024 \text{ MeV/c}^{2 \text{ [1]}}$
- Simple quantum numbers $J^{PC} = 0^{-+}$
- All strong and EM decays forbidden on the first order
 - Rare processes experimentally accessible

Decay Studies

- Test fundamental symmetries
 - C-symmetry in $\eta \rightarrow \pi^0 e^+ e^-$
 - CP-symmetry in $\eta \to \pi^+\pi^-e^+e^-$
- Study structure of the η meson
 - EM transition form factor measurements $\eta \to e^+e^-\gamma$, $\eta \to e^+e^-e^+e^-$
- Provide precise tests of theoretical predictions (ChPT)
 - $\eta \rightarrow \pi^+\pi^-\pi^0$, $\eta \rightarrow \pi^0\pi^0\pi^0$
 - $\eta \rightarrow \pi^0 \gamma \gamma$
 - $\eta \rightarrow \pi^+\pi^-\gamma$
- Search for new physics outside standard model
 - $\eta \rightarrow e^+e^-$

Properties of the n

- Light pseudoscalar, mass $m_n = 547.853 \pm 0.024 \text{ MeV/c}^{2}$ [1]
- Simple quantum numbers $J^{PC} = 0^{-+}$
- All strong and EM decays forbidden on the first order
 - Rare processes experimentally accessible

Decay Studies

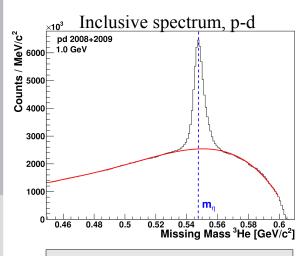
- Test fundamental symmetries

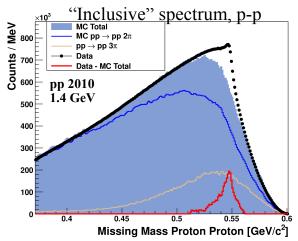
 - C-symmetry in η → π⁰e⁺e⁻
 CP-symmetry in η → π⁺π⁻e⁺e⁻
- Study structure of the prineson
 - EM transition form factor measurements $\eta \to e^+e^-\gamma$, $\eta \to e^+e^-e^+e^-$

This Talk

- Provide precise tests of theoretical predictions (ChPT)
 - $\overbrace{\hspace{1em}\eta \to \pi^+\pi^-\pi^0, \, \eta \to \pi^0\pi^0} \pi^0$

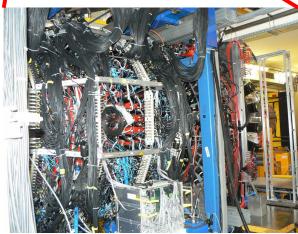
 - $\eta \rightarrow \pi^+\pi^-\gamma$
- Search for new physics outside standard model
 - $\eta \rightarrow e^+e^-$




The WASA-at-COSY Experiment

- Meson production via. $p d \rightarrow {}^{3}He \eta$ $p p \rightarrow p p \eta$
- Measurement of recoil particles in forward detector
- Tagging of η -mesons via missing mass

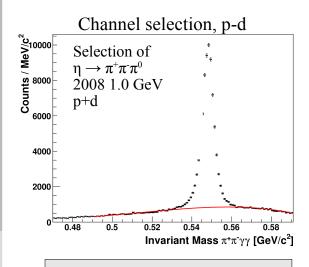
Missing Mass =
$$\sqrt{(E_{in} - E_{out})^2 - (P_{in} - P_{out})^2}$$


proton-deuteron

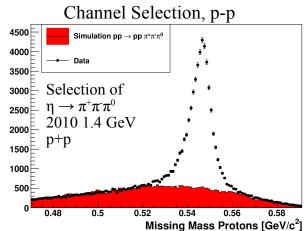
- Lower backgrounds
- Unbiased trigger
- $10 \, \eta/s$ produced

proton-proton

- Higher backgrounds
- Selective trigger
- 100 η/s produced



The WASA-at-COSY Experiment



- Selection of a final state \rightarrow measurement of decay products of the η in central detector
- Full reconstruction of charged and neutral particles
- Total $\sim 4\pi$ acceptance


proton-deuteron

- Analysis of main channels
- Train analyses of rare decays
- 30 Million η on disk

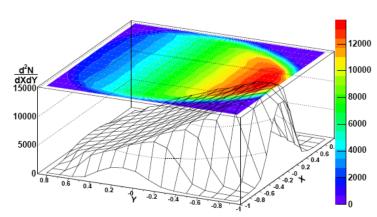
proton-proton

- Analysis of rare channels
- 10⁹ η produced

$\eta \rightarrow \pi^+\pi^-\pi^0$ Motivation

- Isospin-violating process, proceeds due to difference in masses of the light quarks
- Measurement of this channel sensitive to quark mass ratio

$$\Gamma = \left(\frac{Q_D}{Q}\right)^4 \overline{\Gamma}$$
 where $Q^2 = \frac{m_s^2 - \frac{1}{4}(m_u + m_d)^2}{m_d^2 - m_u^2}$ $Q_D = 24.2$

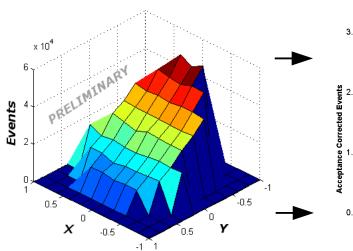

- Current challenge: investigate theoretical predictions including pion final state interactions
- Expand decay rate around X = Y = 0 in Dalitz plot

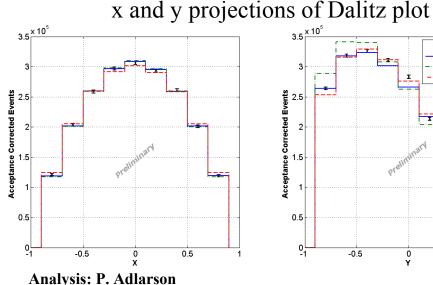
$$\frac{d\Gamma}{dXdY} \propto |A(X,Y)^{2}| \propto 1 + aY + bY^{2} + dX^{2} + fY^{3} + \dots$$

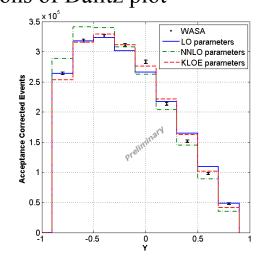
$$X = \sqrt{3} \frac{T_{+} - T_{-}}{Q_{n}} \qquad Y = \frac{3T_{0}}{Q_{n}} - 1 \qquad Q_{n} = T_{+} + T_{-} + T_{0}$$

Recent Experimental Results from KLOE

- Dalitz plot based on 1.34 million events
- b and f parameters difficult to reproduce theoretically
- Important to produce an independent Dalitz plot measurement




$\eta \rightarrow \pi^+\pi^-\pi^0$ at WASA-at-COSY

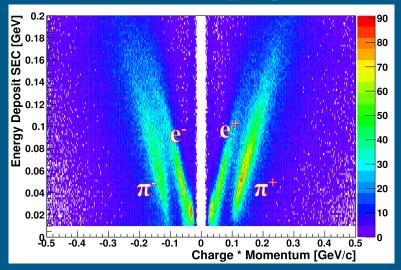


- Analysis of $10 \times 10^6 \, \eta$ mesons from pd \rightarrow ³He η
- 200,000 events in Dalitz plot
- Dalitz plot parameters pending
- Final thesis writing currently in progress

In addition:

Analysis of proton proton data \rightarrow over 1 million events expected in Dalitz Plot Analysis of $\omega \to \pi^+\pi^-\pi^0$ Dalitz plot in proton-deuteron and proton-proton interactions

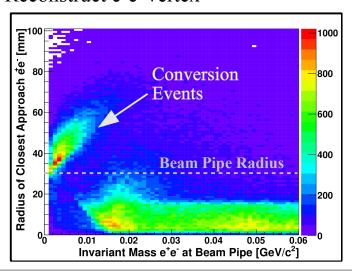
Rare Decays – $\eta \rightarrow \pi^+\pi^-e^+e^-$



- Rare decays are also analyzed at WASA-at-COSY
 - Example: $\eta \rightarrow \pi^+ \pi^- e^+ e^-$ BR($\eta \rightarrow \pi^+ \pi^- e^+ e^-$) =(2.68 ± 0.11) x 10⁻⁴
- Special analysis procedures necessary for rare channels

J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012).

Particle Identification

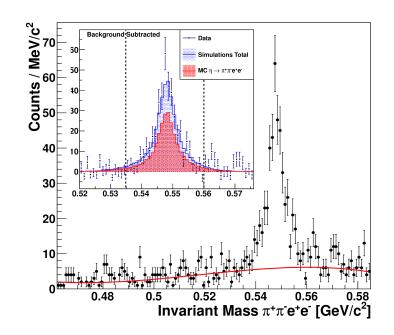

- Energy bands separate electrons from pions
 - Momentum vs. energy deposit

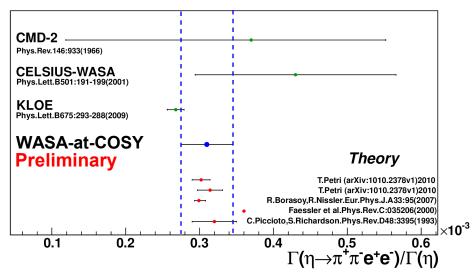
- Neural networks trained with simulated electron/pion signals
- Information from all particles used
 - Reduces ambiguities
- High efficiency: ~95% correct identifications for signal channel

Photon Conversion Pair Rejection

- Signal $\eta \to \pi^+\pi^-e^+e^-$ mimicked by channels with photon converting to e^+e^- pairs
 - $\eta \rightarrow \pi^+\pi^-\gamma \rightarrow \pi^+\pi^-e^+e^-$
 - $\eta \rightarrow \pi^+\pi^-\pi^0 \rightarrow \pi^+\pi^-\gamma \gamma \rightarrow \pi^+\pi^-e^+e^-\gamma$
- Contribution minimized by beryllium beam pipe to ~1%
 - Still significant for rare processes
- Reconstruct e⁺e⁻ vertex

$\eta \rightarrow \pi^+\pi^-e^+e^-$ at WASA-at-COSY

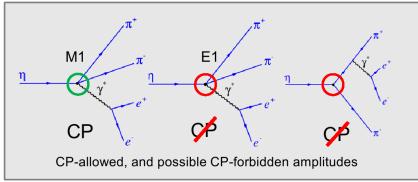



Branching Ratio Extraction

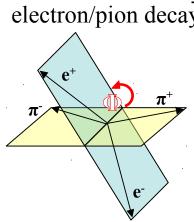
- Recent measurements of BR($\eta \to \pi^+\pi^-\gamma$) disagree with older experiments [1,2]
 - Measure branching ratios in $\eta \to \pi^+\pi^-\gamma$ and $\eta \to \pi^+\pi^-e^+e^-$ at WASA-at-COSY
- Analysis in proton-deuteron reactions
 - (263±24_{stat}) event candidates
- Several new sources of systematic error investigated and corrected
 - Reproduced branching ratios for several known channels within same analysis

BR(
$$\eta \rightarrow \pi^+ \pi^- e^+ e^-$$
) =(3.10 ± 0.27_{stat} ± 0.22_{sys}) × 10⁻⁴

- Result in agreement with theoretical and experimental values
- Higher precision necessary to confirm compatibility with KLOE measurement



$\eta \rightarrow \pi^+\pi^-e^+e^-$ at WASA-at-COSY



18

- In some unconventional cases, amplitude could include a CP-violating component [1,2]
 - No CP-violation expected in this decay by Standard Model

• Would cause an asymmetry in the electron/pion decay planes of up to 1% [2]

netry in the anes of up to 1% [2]
$$A_{\Phi} = \frac{Count \left(\sin \Phi \cos \Phi > 0\right) - Count \left(\sin \Phi \cos \Phi < 0\right)}{Count \left(\sin \Phi \cos \Phi > 0\right) + Count \left(\sin \Phi \cos \Phi < 0\right)}$$

0.58

Invariant Mass

$$A_{\Phi} = (0.4 \pm 9.0_{\text{stat}} \pm 2.8_{\text{sys}}) \times 10^{-2}$$
 preliminary

KLOE value: $A_{\Phi} = (-0.6 \pm 2.5_{stat} \pm 1.8_{sys}) \times 10^{-2}$

0.2

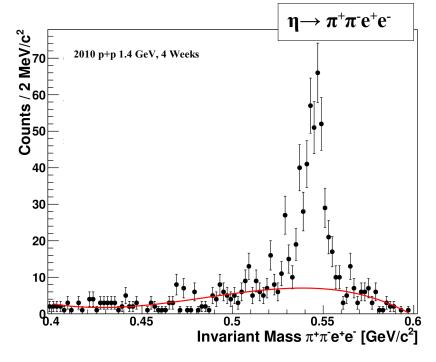
sindenso > 0

Sum Peak : 201 ± 17.

Signal : 131 ± 17

 $\sin\Phi\cos\Phi$

^{1.} Mod. Phys. Lett. A 17 (2002) 1489.


^{2.} Mod. Phys. Lett. A **17** (2002) 1583.

Outlook: $pp \rightarrow pp\eta$ Data

- 17 weeks of pp \rightarrow pp η data on disk
- Preliminary analysis performed on a portion of the data
- Several channels identified via kinematic fit of various hypotheses
- 20 times higher η production cross section than pd
 - But higher beam energy, larger Lorentz boost, lower acceptance
 - In practice 5 times higher statistics available than p-d
- Extrapolation to full data set predicts competitive statistics available

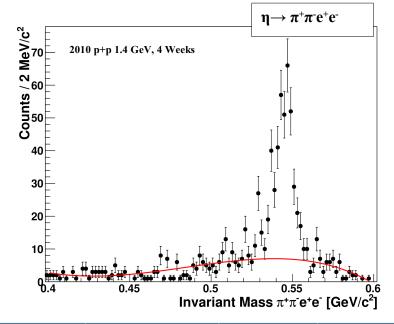
4 weeks p+p data, (222 ± 22) events

Scales to $(1,117 \pm 49)$ events in full data

Summary

- Analysis of $\eta \to \pi^+\pi^-\pi^0$ is nearly completed in pd with 200,000 events in the Dalitz plot
- The rare decay $\eta \to \pi^+\pi^-e^+e^-$ has been analyzed and the branching ratio and dihedral asymmetry have been measured

Branching Ratio:
$$BR(\eta \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}) = (3.10 \pm 0.27_{stat} \pm 0.22_{sys}) \times 10^{-4}$$
 preliminary Decay Plane Asymmetry:
$$A_{\Phi} = (0.4 \pm 9.0_{stat} \pm 2.8_{sys}) \times 10^{-2}$$
 preliminary

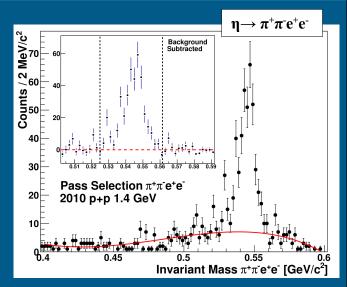

- Analysis of higher statistics in proton-proton data is in progress
- This is just a part of an extensive light meson decay program at WASA-at-COSY

Outlook: $pp \rightarrow pp\eta$ Data

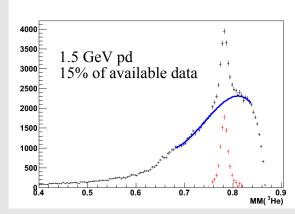
- Preliminary analysis performed on a portion of the data
- Several channels identified via kinematic fit of various hypotheses
- 10 times higher η production cross section
 - But higher beam energy, larger Lorentz boost, lower acceptance
 - In practice 5 times higher statistics available than p-d
- Extrapolation to full data set predicts competitive statistics available

Channel	Events	Data Analyzed	Expected in Full Data Sample
$\eta \rightarrow \pi^+ \pi^- \pi^0$	$(43,871 \pm 254)$	1 Week	$(883,184 \pm 1,140)$
$\eta \longrightarrow \pi^+\pi^-\gamma$	$(14,406 \pm 336)$	1 Week	$(290,013 \pm 1,508)$
$\eta \rightarrow e^+e^-\gamma$	$(2,973 \pm 72)$	1 Week	$(59,850 \pm 323)$
$\eta \rightarrow \pi^+\pi^-e^+e^-$	(222 ± 22)	4 Weeks	$(1,117 \pm 49)$

Current PhD theses focus on this data. Shown here \rightarrow results from a preliminary analysis



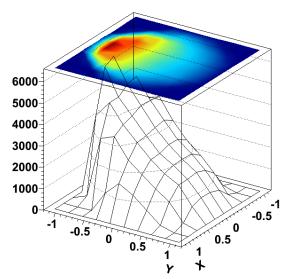
Outlook: Next Steps



$\eta \to \pi^+\pi^-e^+e^-$ in proton-proton Reactions

- Expect >1100 events in complete data set
- Analysis steps from pd successfully applied

$\omega \to \pi^+\pi^-\pi^0$ in pd and pp

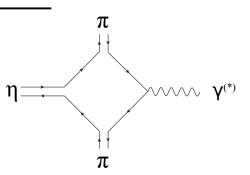


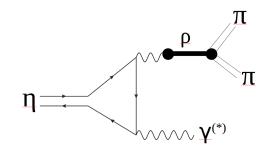
Analysis: L. Heijkenskjöld, S. Sawant

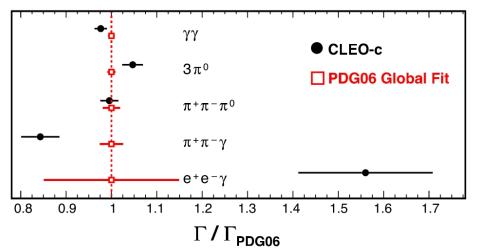
- Exploratory analysis to measure Dalitz plot parameters
- Dedicated PhD topic in pd and pp

$\eta \rightarrow \pi^+\pi^-\pi^0$ in proton-proton Reactions

- Expect ~1 Million events in final Dalitz plot
- Topic of two dedicated PhD theses
- Build on methods learned from proton-deuteron analysis




$\eta \longrightarrow \pi^+\pi^-\gamma$



Study of Anomalous QCD

- At chiral limit, proceeds via QCD box-anomaly
 - In reality, signal obscured by resonant contributions
- Two experimental observables
 - Kinematic spectra
 Adlarson et al. Phys. Lett. **B707** (2012) 243-249.
 - Branching ratio

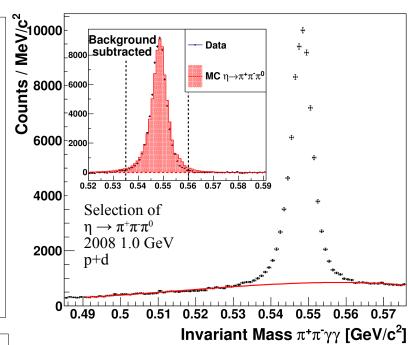
Reproduced from: Lopez et. al. Phys. Rev. Lett. 99 (2007) 122001.

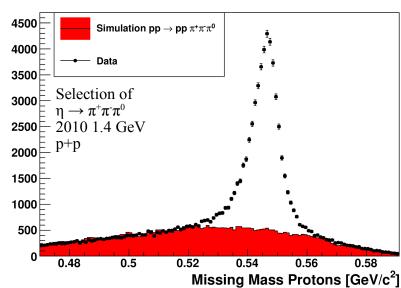
Branching Ratio

- CLEO measured BR(η→π⁺π⁻γ) about 10% lower than PDG value
 Lopez et. al. Phys. Rev. Lett. 99 (2007) 122001.
- Discrepancy later confirmed by KLOE Ambrosino et. al. arXiv:1107.5733v1 (2011)
- Dedicated PhD thesis topic at WASAat-COSY
- Also investigating closely-related process $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

η Production at WASA-at-COSY

$$pd \rightarrow {}^{3}He \eta \qquad E_{kin} = 1.0 \text{ GeV}$$

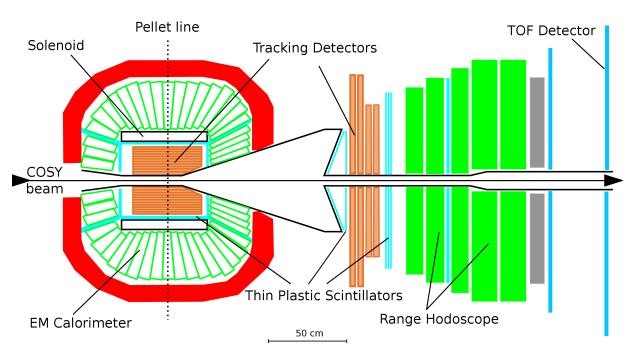

- $\sigma_{\eta} = 0.4 \ \mu b \rightarrow \sim 10 \ \eta/s \ produced$
- Trigger just on ³He unbiased w.r.t. η decay
- Low direct-pion cross section
- 30 million η on disk

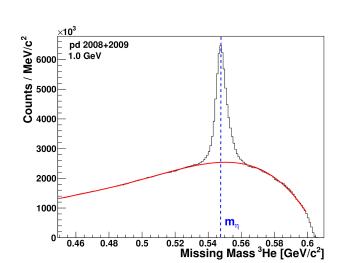

Well suited for measurement of common channels

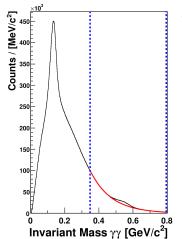
$$pp \rightarrow pp \eta$$
 $E_{kin} = 1.4 \text{ GeV}$

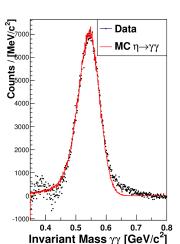
- $\sigma_{\eta} = 9.8 \ \mu b \rightarrow > 100 \ \eta/s \ produced$
- Selective trigger required
- High cross-section of multi pion production
- 1 x 10⁹ η produced

Well suited for measurement of rare decays

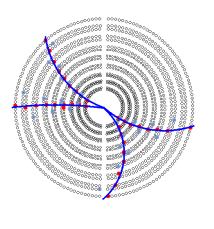


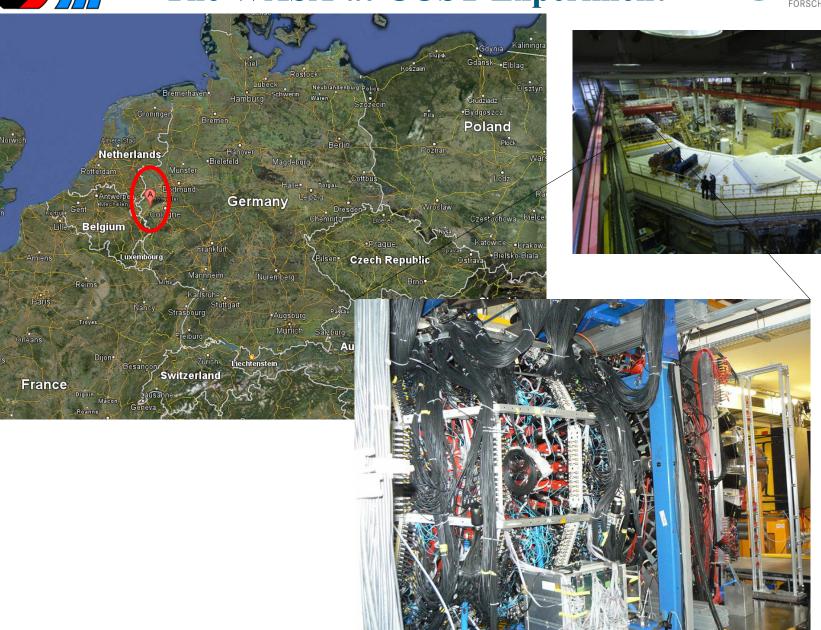

The WASA-at-COSY Experiment





Forward Detector


Electromagnetic Calorimeter


Mini Drift Chamber

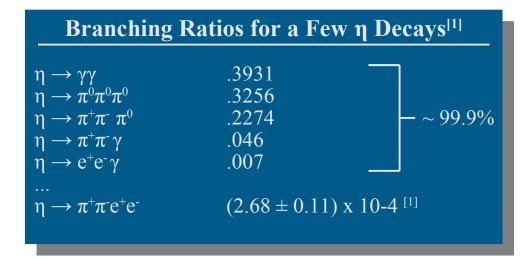
The WASA-at-COSY Experiment

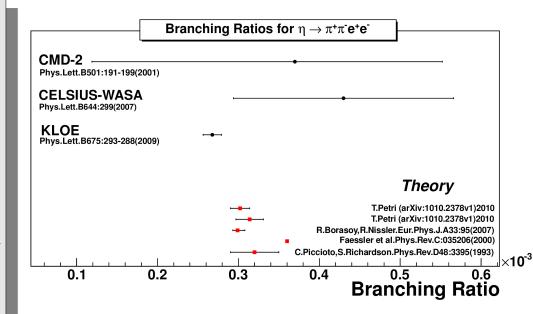
Interesting Decays of the η

Decay mode	Fraction Γ _i /Γ _{total} *	Issue
$\eta \to \pi^0 \pi^0 \pi^0$	$(32.57 \pm 0.23) \times 10^{-2}$	G-parity, Dalitz plot parameter,
$\eta \to \pi^+\pi^-\pi^0$	$(22.74 \pm 0.28) \times 10^{-2}$	Quark masses
$\eta \to \pi^+\pi^-\gamma$	$(4.60 \pm 0.16) \times 10^{-2}$	Box anomaly
$\eta \rightarrow \gamma e^+ e^-$	$(6.9 \pm 0.4) \times 10^{-3}$	Transition form factor
$\eta \to \pi^0 \gamma \gamma$	$(2.7 \pm 0.5) \times 10^{-4}$	ChPT
$\eta \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$	$(2.68 \pm 0.11) \times 10^{-4}$	CP-Violation
$\eta \rightarrow e^+e^-e^+e^-$	$(2.40 \pm 0.22) \times 10^{-5}$	Transition form factor
$\eta \to \pi^0 e^+ e^-$	< 4 x 10 ⁻⁵	C-Violation
$\eta \rightarrow e^+e^-$	< 5.6 x 10 ⁻⁶	New physics?

The Decay $\eta \rightarrow \pi^+\pi^-e^+e^-$

The η meson:


- Is a light pseudoscalar with mass: $m = 547.853 \pm 0.024 \text{ MeV/c}^{2}$
- Quantum numbers:

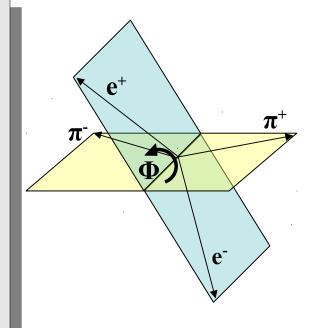

$$J^{PC} = 0$$
 -+

- All strong and electromagnetic decays suppressed in first order
 - Rare processes experimentally accessible

Brancing Ratio of $\eta \to \pi^+\pi^-e^+e^-$

- Closely related to $\eta \to \pi^+\pi^-\gamma$
 - Based on same underlying, anomalous processes
 - Relative branching ratios well-established
- Possible experimental discrepancy in absolute branching ratio of both channels
 - Recent measurements of $\eta \to \pi^+\pi^-\gamma$ find a value about 10% lower than previous
 - Both final states can be investigated at WASA-at-COSY

CP-Violation in \eta \rightarrow \pi^+\pi^-e^+e^-

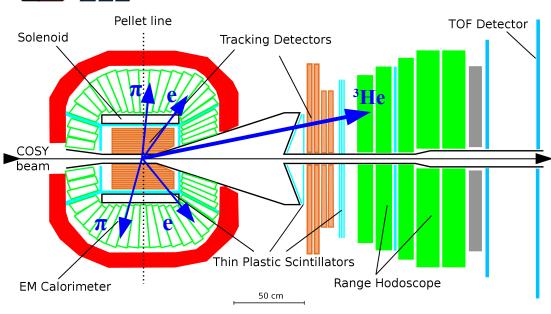

CP-Violation in the Standard Model

- In Weak Interactions
 - Well-established in kaon and B-meson decays
 - Quantified via a single phase in flavor-changing reactions
 - Relatively small effect, considering cosmological expectations
- In Strong Interactions
 - QCD naturally contains a CP-violating component
 - Highly constrained by experimental measurements

CP-Violation in $\eta \to \pi^+\pi^-e^+e^-$

- No CP-violation predicted for this channel by Standard Model
- CP-violation would cause an asymmetry in the angle between electron and pion decay planes^[2]:

- Theoretical upper limit $A_{\Phi} \sim 2\%$ [2]
 - Measurement requires high statistics



[2] D.N. Gao, Mod. Phys. Lett. A 17 (2002) 1583.

Experiment (Detector)

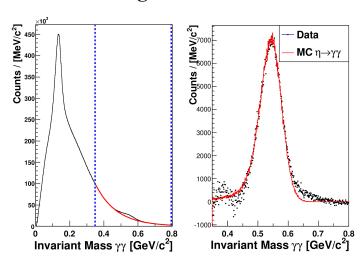
Experimental Conditions

Beam: Protons with p = 1.7 GeV/c

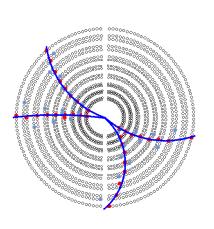
Target: Deuterium pellets (6-8 kHz)

Luminosity: Average 3.1 x10³¹ cm⁻²s⁻¹

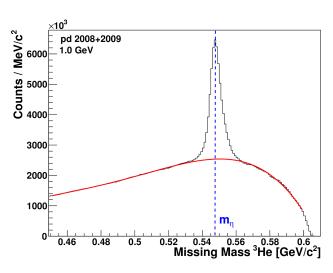
$$\sigma_{\eta} = (0.413 \pm 0.015) \,\mu b^{[3]}$$


 $\sim 10 \, \eta/s$ produced

Production Reaction: $pd \rightarrow {}^{3}He \ \eta$


Reconstructed \eta-mesons: 30 x 10⁶ in 12 weeks of data tagged via missing

mass technique


Electromagnetic Calorimeter

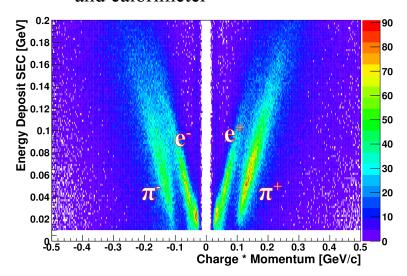
Mini Drift Chamber

Forward Detector

[3] R. Bilger et al. Phys.Rev.C65(4):1-6, March 2002.

Analysis Steps/Highlights

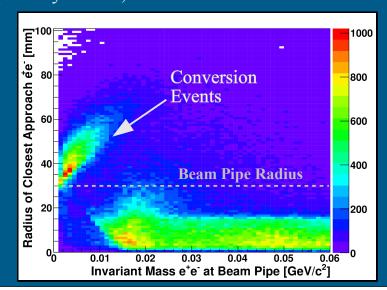
Four-vector Reconstruction


Particle Selection

Particle Identification

Kinematic — Fitting ► Final Selection Criteria

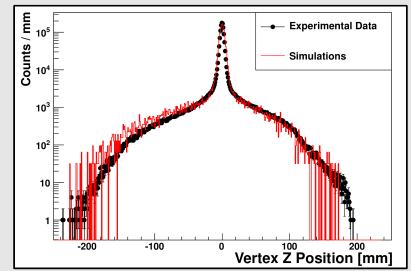
Particle Identification


- Energy bands separate electrons from pions
 - Momentum from Mini Drift Chamber
 - Energy from plastic scintillators and calorimeter

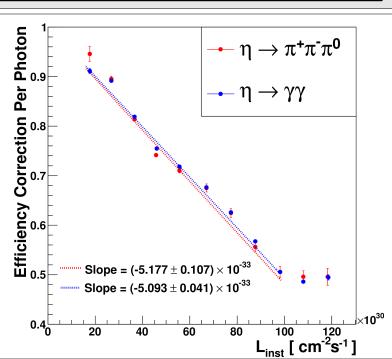
- Neural networks trained with simulated electron/pion signals
- Information from all particles used
 - Reduces ambiguities
- High efficiency: ~95% correct identifications for signal channel

Photon Conversion Pair Rejection

- Signal $\eta \to \pi^+\pi^-e^+e^-$ mimicked by channels with photon converting to e^+e^- pairs
 - $\eta \rightarrow \pi^+\pi^-\gamma \rightarrow \pi^+\pi^-e^+e^-$
 - $\eta \rightarrow \pi^+\pi^-\pi^0 \rightarrow \pi^+\pi^-\gamma \gamma \rightarrow \pi^+\pi^-e^+e^-\gamma$
- Contribution minimized by beryllium beam pipe to ~1%
 - Still significant for rare processes
- Suppression based on reconstruction of primary vertex, ~90% effective



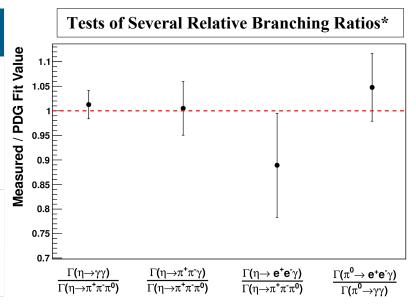
Systematics

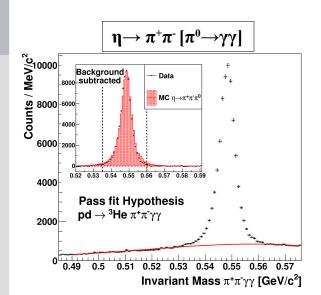

Rest Gas

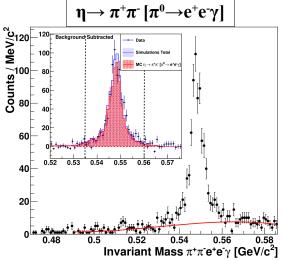
- Evaporated gas from pellets interacts with beam particles
- Rest Gas events look similar to beam-pellet events
 - Different reconstruction efficiency
 - Certain information relies on primary vertex, will be incorrectly reconstructed
- Quantify rest gas via $\pi^+\pi^-$ vertex position
- Include rest gas in simulations

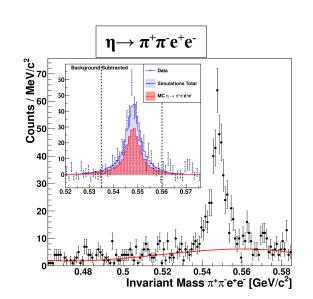
Luminosity Effects

- Yield of all channels decreases with luminosity
- Inefficiency to number of photons in event to first order
 - Photon efficiency correction derived using two independent channels
 - Function used to correct efficiencies for other channels
- Cross-check: measure relative branching ratios between several different channels with different numbers of photons in final state

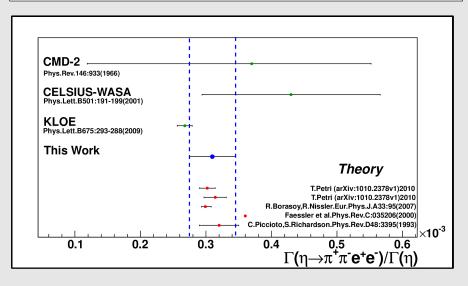



Selection of Decay Channels



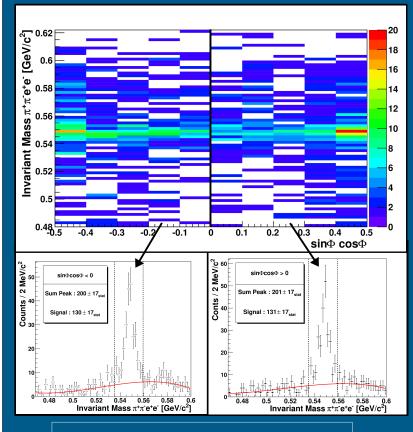

Channel	Branching Ratio*	Tests
η→γγ	$(39.31 \pm 0.20) \times 10^{-2}$	 Photon reconstruction efficiency
$\eta \rightarrow \pi^+\pi^-[\pi^0 \rightarrow \gamma\gamma]$	$(22.47 \pm 0.28) \times 10^{-2}$	• Fit errors for pions
$\eta { ightarrow} \pi^+ \pi^- \gamma$	$(4.60 \pm 0.16) \times 10^{-2}$	Fit errors for pionsRelative efficiency
$\eta \rightarrow e^+e^-\gamma$	$(6.9 \pm 0.4) \times 10^{-3}$	Fit errors for electronsParticle identificationConversion suppression
$\eta \rightarrow \pi^+\pi^-[\pi^0 \rightarrow e^+e^-\gamma]$	$(2.67 \pm 0.09) \times 10^{-3}$	• Nearly identical f.s. to signal channel

^{* 2012} Review of Particle Physics. J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012)



Results

Branching Ratio


$$BR(\eta {\to} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -}) \ = (3.10 \pm 0.27_{stat} \pm 0.22_{sys}) \times 10^{\scriptscriptstyle -4}$$

- Agreement with theoretical calculations
- Compatible with other experimental results
 - Higher precision required to clarify discrepancy between theory and KLOE result
 - Compare to measurements of $\eta \rightarrow \pi^+ \pi^- \gamma$ branching ratio

CP-Violating Asymmetry

• $(263\pm24_{\text{stat}})$ signal event candidates

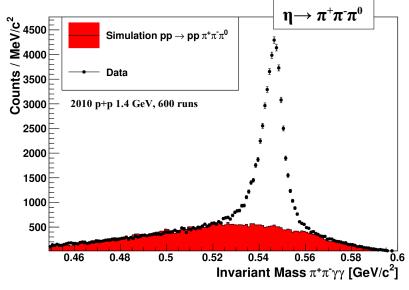
$$A_{\Phi} = (0.4 \pm 9.0_{\text{stat}} \pm 2.8_{\text{sys}}) \times 10^{-2}$$

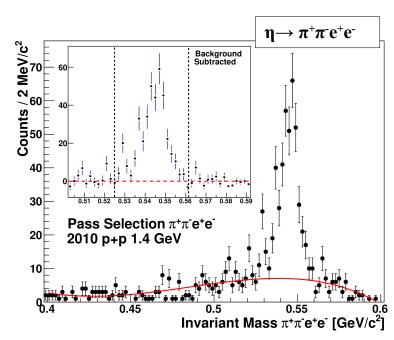
Conclusion

Summary

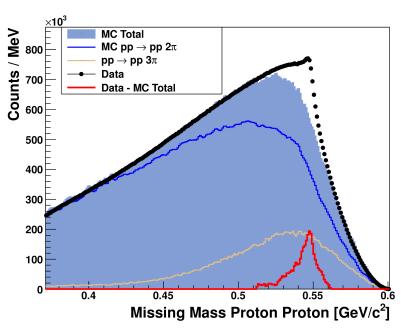
- $(263\pm24_{\text{stat}})$ event candidates for the channel $\eta \rightarrow \pi^+\pi^-e^+e^-$ have been identified in p-d data and the branching ratio and possible CP-violating observable have been measured
- Several analysis techniques used at WASA-at-COSY for the first time
 - Particle identification with neural networks
 - Photon conversion suppression using primary vertex reconstruction
- Several systematic effects thoroughly investigated
 - Effects of rest-gas (more accurate parameterization using primary vertex)
 - Inefficiencies related to luminosity

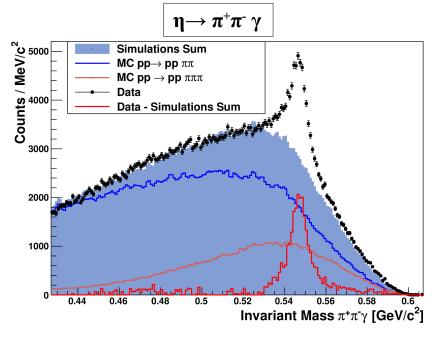
Outlook

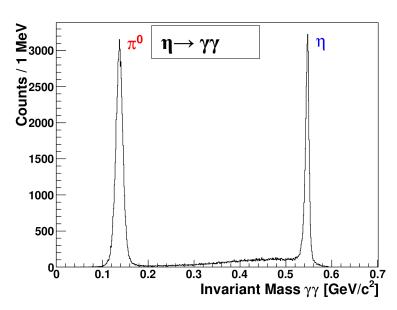

- 17 weeks of data in available in proton-proton reactions
 - Higher cross section \rightarrow over 10^9 eta mesons produced
- Preliminary analyses of several channels have been completed on a subset of this data as part of this work
 - Clear signals are visible from all decay channels previously studied in p-d
 - Competitive statistics are available
 - Estimated (1,117 ± 49) reconstructed $\eta \rightarrow \pi^+\pi^-e^+e^-$ event candidates available in complete data

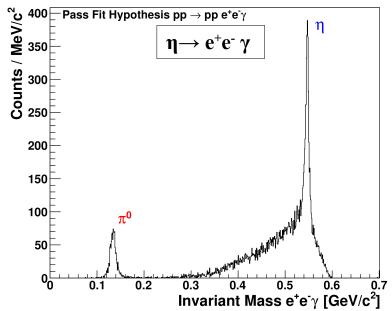

Proton-Proton Data

Channel	Events	Data Analyzed	Expected in Full Data Sample
$\eta \longrightarrow \pi^+ \pi^- \pi^0$	$(43,871 \pm 254)$	1 Week	$(883,184 \pm 1,140)$
$\eta \longrightarrow \pi^+\pi^-\gamma$	$(14,406 \pm 336)$	1 Week	$(290,013 \pm 1,508)$
$\eta \rightarrow e^+e^-\gamma$	$(2,973 \pm 72)$	1 Week	$(59,850 \pm 323)$
$\eta \rightarrow \pi^+\pi^-e^+e^-$	(222 ± 22)	4 Weeks	$(1,117 \pm 49)$


- σ_n 25 times higher than in p-d
 - Beam momentum 2.14 GeV/c
 - $pp \rightarrow pp \eta$
- 17 weeks of data available
 - $\sim 10^9$ produced η -mesons
- Preliminary analysis of a portion of the data
 - Clean signals extracted for several channels
 - Extrapolation to full data set predicts competitive statistics available

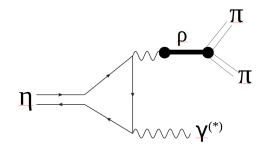


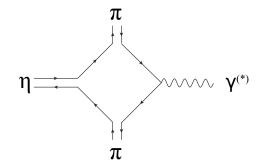



More Signals in pp

Motivation 1: Introduction

The η meson

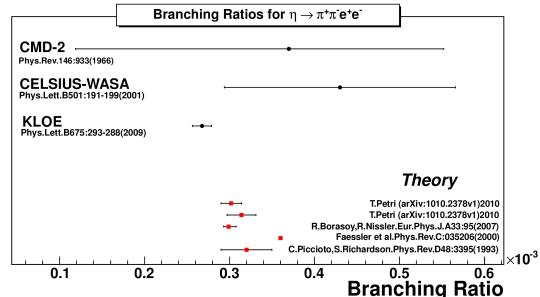

- $q=0, I=0, J^{PC}=0^{-+}$
- Mass = 547.9 MeV/c^2
- Decay studies
 - » Test fundamental symmetries
 - » Hadron structure and dynamics


See: P.Wurm HK-54 – Tomorrow

• The decay $\eta \rightarrow \pi^+\pi^-e^+e^-$

- Low-level diagrams same as $\eta \to \pi^+\pi^-\gamma$ See: D.Lersch HK-38
- Experimental observables
- \rightarrow $\eta \rightarrow \pi^+\pi^-\gamma$
 - Kinematic distributions
 - Branching ratio
- \rightarrow $\eta \rightarrow \pi^+\pi^-e^+e^-$
 - Branching ratio

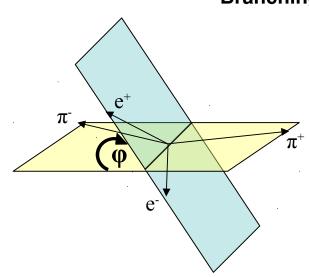
Branching Ratios for a few η Decays ¹		
$egin{aligned} \eta & ightarrow \gamma \gamma \ \eta & ightarrow \pi^0 \pi^0 \pi^0 \ \eta & ightarrow \pi^+ \pi^- \pi^0 \ \eta & ightarrow \pi^+ \pi^- \gamma \ \eta & ightarrow e^+ e^- \gamma \end{aligned}$.3931 .3256 .2274 .046 .007	
$\eta o \pi^+\pi^-\mathrm{e}^+\mathrm{e}^-$	2.68 x 10 ⁻⁴	



Motivation 2 : Observables

Branching Ratio

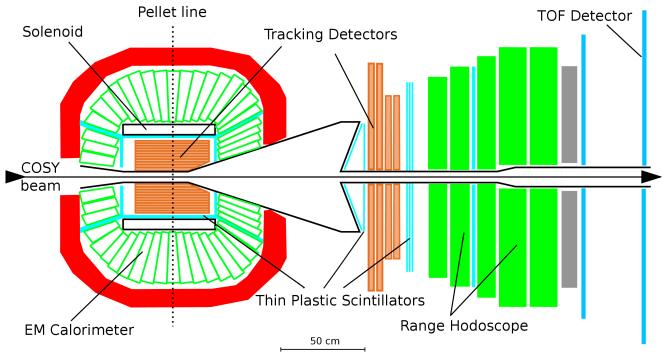
- $\Gamma(\eta \to \pi^+\pi^-e^+e^-)/\Gamma(\eta \to \pi^+\pi^-\gamma)$ well established theoretically
- Recent measurements of absolute branching ratio in both channels lower than expected

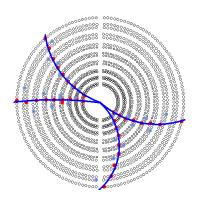


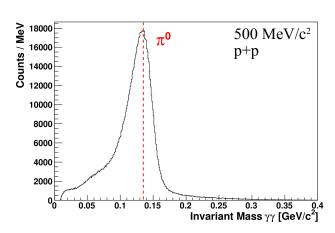
CP-Violating Observable

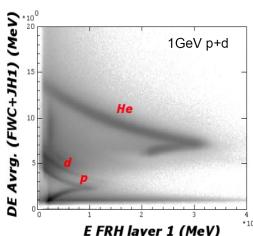
- Possible CP-violation outside of Standard Model See: D.N. Gao, Mod. Phys. Lett. A 17 (2002) 1583.
- Would produce asymmetry in angle between electron and pion decay planes
- Theoretical upper limit $\rightarrow \sim 1 \times 10^{-2}$
 - High statistics needed!

Experimental upper limit from KLOE:


$$A_{\Phi} = (-0.6 \pm 2.5_{\text{stat}} \pm 1.8_{\text{syst}}) \times 10^{-2}$$




Experiment: WASA Detector



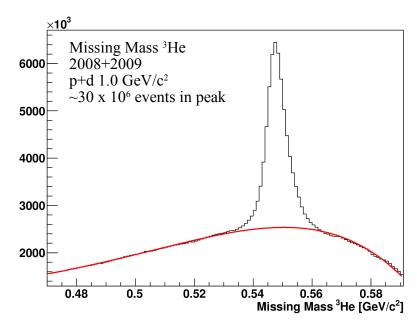
Charged Particle
Track Reconstruction

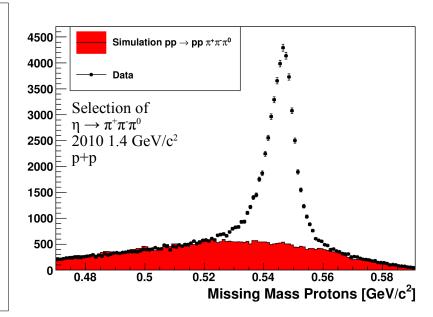
Photon Reconstruction

Forward Range for PID and Reconstruction

η Production

$$pd \rightarrow {}^{3}He \eta \qquad E_{kin} = 1.0 \text{ GeV}$$

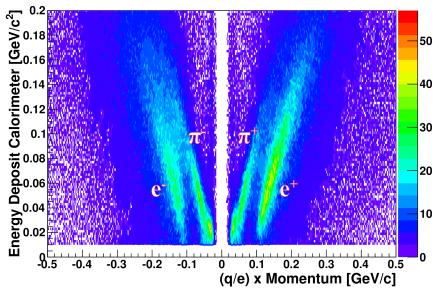

- $\sigma_{\eta} = 0.4 \ \mu b \rightarrow \sim 10 \ \eta/s \ produced$
- Trigger just on ³He unbiased w.r.t. η decay
- Low direct-pion cross section
- 30 million η on disk


Well suited for measurement of common channels

$$pp \rightarrow pp \eta$$
 $E_{kin} = 1.4 \text{ GeV}$

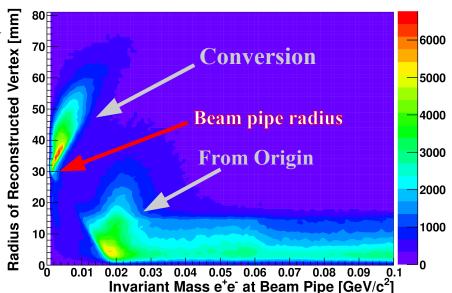
- $\sigma_n = 9.8 \ \mu b \rightarrow >100 \ \eta/s \ produced$
- Selective trigger required
- High cross-section of multi pion production
- 5 x 10⁸ η produced

Well suited for measurement of rare decays



Analysis

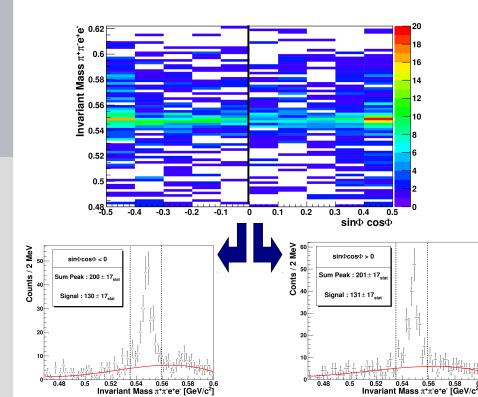
Particle Identification

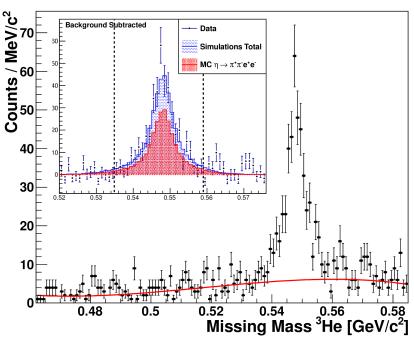

- In $\eta \to \pi^+\pi^-e^+e^-$, PID necessary for mass assignment
- Large pion background makes PID important for clean selection of channels with e⁺e⁻
- Energy bands separate electrons and pions → trained into neural networks

- Suppression of Photon Conversion

 Background from e⁺e⁻ pairs from external conversion important when analyzing rare decays

 Tracking from drift chamber allows determination of primary vertex
 90% of conversion pairs can be reliably rejected




Results

Branching Ratio

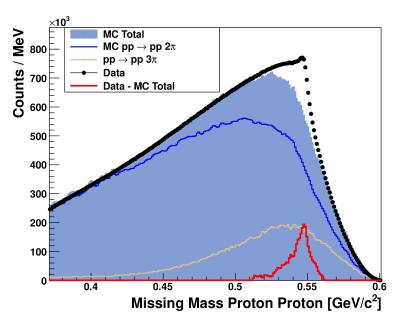
- $263 \pm 24_{\text{stat}}$ signal event candidates
- Signal:Background ratio 2:1
- Final systematical checks in progress

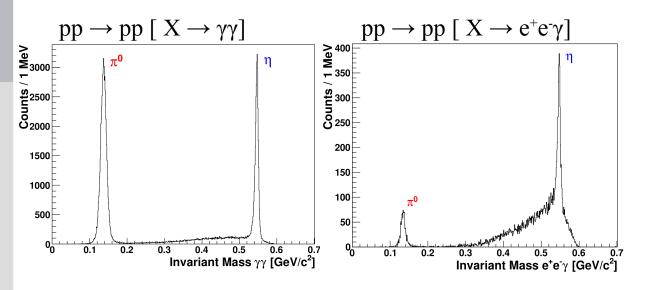
Decay Plane Asymmetry

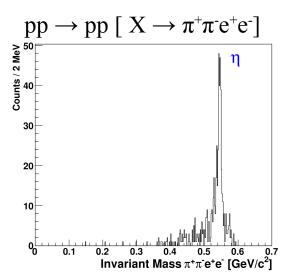
- Check asymmetry around 0 of sinΦcosΦ
- $A_{\Phi} = 0.3 \pm 9.0_{stat}$ Preliminary
- Extend analysis to proton-proton data
 - Higher rate of η production
 - Reduce statistical error to ~4% assuming no other changes

Conclusion

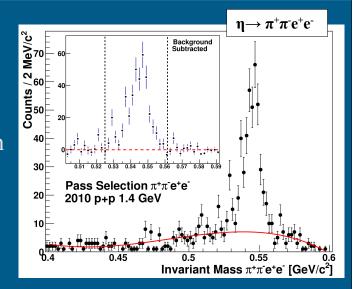
- The decay $\eta \rightarrow \pi^+\pi^-e^+e^-$ has been measured in proton-deuteron reactions at WASA-at-COSY
 - $-263\pm24_{\text{stat}}$ signal events identified
 - $-\mathbf{A}_{\mathbf{\Phi}}$ compatible with zero (9 x 10⁻² statistical error)


- Meson decay program at WASA-at-COSY
 - Dedicated beam times for η , ω , and π^0 decays
 - -7 weeks of data taking in pp \rightarrow pp η successfully concluded last week

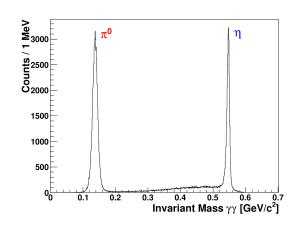


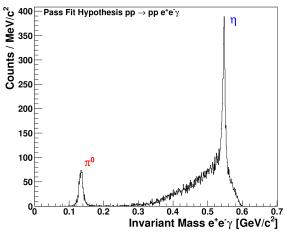

Proton-Proton Data

- Higher backgrounds than in pd
- Analysis techniques developed in protondeuteron allow clean signals from η decays to be seen
 - Particle identification
 - Conversion suppression
 - Kinematic fitting



Outlook: Next Steps




$\eta \to \pi^+\pi^-e^+e^-$ in proton-proton Reactions

- Expect >1100
 events in complete
 data set
- Analysis steps from pd successfully applied

Channel	Events	Data Analyz
$\eta \longrightarrow \pi^+\pi^-\pi^0$	$(43,871 \pm 254)$	1 Wee
$\eta \longrightarrow \pi^+\pi^-\gamma$	$(14,406 \pm 336)$	1 Wee
$\eta \rightarrow e^+e^-\gamma$	$(2,973 \pm 72)$	1 Wee
$\eta \rightarrow \pi^+\pi^-e^+e^-$	(222 ± 22)	4 Wee

