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Spectral functions in QCD

 The spectrum of hadrons is a key to study the symmetry, 
structure and dynamics of hadrons in QCD. Recent 
discoveries of many new (exotic) states have brought new 
concepts, such as multi-quark states, molecular 
resonances, dynamically generated resonances.

 Hadron properties at finite temperature and/or at finite 
density (in hadronic medium) are crucial in mapping the 
QCD phase diagram.

 In these studies, the spectral functions of hadrons play key 
roles and should be computed from the first principle, 
QCD. Lattice QCD is obviously a strong method, while 
QCD sum rule is useful as a complimentary approach.



Cn contains the hard QCD/perturbative contributions.
Non-perturbative effects are taken into account as the 
matrix elements of the local operators, On, i.e., QCD 
vacuum condensates.
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Two point function of composite operators

(1) OPE (Operator Product Expansion)

at deep Euclid region                        where the QCD can 
be treated perturbatively.

QCD Sum Rule
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Π(p) ≡ i

∫
d4x eip·x〈0|T (J(x)J†(0)|0〉



(3) Causality: Dispersion relation

ρ(p2) ≡ 1
π

ImΠ(p2) =
∑

|〈0|J(0)|m〉|2δ(p2 −m2)
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QCD Sum Rule

(2) Imaginary part of the Π(p2) gives the spectral function

ρ(s)

s

OPE

Physical region

(4) To improve: Borel transformation

M is called the Borel mass, playing as a new variable. 
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Π(p2) =
∫

ρ(s)
s− p2 − iε

ds



∫
e−s/M2

Im ΠOPE(s) ds =
∫

e−s/M2
ρ(s) ds
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The Borel transform (1) eliminates unwanted subtraction terms, 
and (2) makes the OPE convergence better 
Then we obtain the Borel sum rule 

(5) The conventional sum rule assumes a specific form of the 
spectral function, usually a pole plus continuum assumption,

and determine the mass (and the strength) of the pole by fitting 
the sum rule.

QCD Sum Rule

Analytically calculable to be obtained

ρ(s) = λδ(s−m2) + θ(s− s0)ρOPE(s)

7
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Maximum Entropy Method for Sum Rule

 A new approach using the Bayesian inference method 
allows us to obtain the spectral function directly from the 
sum rule without assuming its explicit form. 

 The sum rule is reduced to a mathematical problem to 
invert the integral relation:

 For the given G(M) by the OPE, the most probable ρ(ω) is 
extracted.

8

P. Gubler, M.O., Prog. Theor. Phys. 124 (2010) 995, arXiv:1005.2459

G(M) =
∫ ∞

0
dω K(M,ω)ρ(ω) K(M,ω) =

2ω

M2
e−ω2/M2



 Bayes’ Theorem

 Find the maximum of P[ρ|G, I] to obtain the most probable 
spectral function. (Maximum Entropy Method)

 The same method was applied to obtain the spectral 
function from the lattice QCD data.
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Maximum Entropy Method for Sum Rule

P[A|B] : conditional probability of A given B
I : general constraints for ρ
P[G|ρ, I] : likelihood function 
P[ρ|I] : prior probability

P [ρ|G, I] = P [G|ρ, I]P [ρ|I]/P [G|I]
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M. Asakawa, T. Hatsuda, Y. Nakahara, Prog.Part.Nucl.Phys.46 
(2001) 459-508.
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P [G|ρ, I] = Z−1
L e−L[ρ]

P [ρ|I] = Z−1
s eαS[ρ]

L[ρ] =
1

2(Mmax −Mmin)

∫ Mmax

Mmin

dM
[G(M)−GOPE(M)]2

σ2(M)
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Maximum Entropy Method for Sum Rule
Likelihood function
We assume the Gaussian distribution, similarly to the χ2 
fitting.

Prior probability  
Shannon-Jaynes entropy

m(ω): default model, which maximizes the entropy if no 
information on G is given.

G(M) =
∫ ∞

0
dω K(M,ω)ρ(ω)

S[ρ] =
∫ ∞

0
dω[ρ(ω)−m(ω)− ρ(ω) log(ρ(ω)/m(ω))]

10



- During the last 10 years, a picture has emerged, 
from studies using quenched lattice QCD (and 
MEM), that the J/ψ survive above Tc.

- But a new calculation gives different results.
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Charmonium Spectrum at finite T
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MEM is most suitable for this problem.



ν ≡ 4m2
c

M2
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Charmonium Sum Rules at T=0
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The sum rule:

perturbative terms 
including αs correction 

Non-perturbative corrections 
including condensates up to dim 6
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MEM Analysis at T=0

S-wave

P-wave

mηｃ=3.02 GeV (Exp: 2.98 GeV)mJ/ψ=3.06 GeV  (Exp: 3.10 GeV)

mχ0=3.36 GeV  (Exp: 3.41 GeV) mχ1=3.50 GeV  (Exp: 3.51 GeV)

13 Gubler, Morita, M.O., PRL 107, 092003 (2011)



(uαuβ − 1
4
gαβ)G2 =

〈αs

π
Gaα

λ Gaλβ
〉

ν =
4m2

h

M2
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The Sum Rule approach has an advantage to Lattice QCD, where the 
finite T reduction of  available data points makes the direct 
comparison of  T=0 and T≠0 spectral functions difficult.

The QCD sum rule at finite T has been formulated in Hatsuda, 
Koike, Lee, Nucl. Phys. B 394, 221 (1993). The condensates bear the 
temperature dependences.

new term at finite T

Charmonium Spectrum at finite T

Twist-2 condensate

14

The Gluon condensate terms are suppressed by the heavy 
quark masses



Tαβ = (ε + p)(uαuβ − 1
4
gαβ) +

1
4
gαβ(ε− 3p)
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K. Morita and S.H. Lee, Phys. Rev. Lett. 100, 022301 (2008).
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The energy-momentum tensor (of  pure QCD)

Matching the trace part and the Symmetric Traceless part

T dependences are 
obtained from 
quench lattice QCD

T-dependence of  the condensates
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The T dependences of ε, p and 
αs are obtained from quenched 
lattice calculations: 

A sudden change of  G0(T) and 
G2(T) above Tc is observed. 

αs(T )

T-dependence of  the condensates
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Charmonium spectral function by MEM
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negative peak shift of ~50 MeV 
consistent with the previous sum 
rule analysis by Morita and Lee.

almost disappearing

J/ψ ηc

MEM results at T=Tc
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Charmonium spectral function by MEM
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Charmonium spectral function by MEM
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Charmonium spectral function by MEM
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Charmonium spectral function by MEM
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T=0

The OPE data in the Vector channel at various T:

Charmonium spectral function by MEM
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T=1.2 Tc

The OPE data in the Vector channel at various T:

cancellation between 
αs and condensate 
contributions

Charmonium spectral function by MEM
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 We have found that the sudden change of the gluon 
condensate (observed on the Quenched Lattice) induces a 
strong suppression of the charmonium peaks, especially 
the P-wave excited states.

 The J/ψ peak disappears quickly at T > Tc.

Charmonium spectrum at finite T

20
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Bottomonia at finite temperature

M.OKA  @ CD12

The data suggest that the excited states Υ(2S), Υ(3S) 
disappear at a lower temperature than ground state Υ(1S).

S. Chatrchyan et al. [CMS Collaboration], 
Phys. Rev. Lett.107, 052302 (2011)

Heavy ion collision at the LHC (CERN)

Υ(1S)

Υ(2S,3S)

21



M.OKA  @ CD12

G. Aarts et al., JHEP 1111 (2011) 103Lattice QCD + NRQCD with MEM

Υ

Bottomonia at finite temperature
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Bottomonia at zero temperature

Υ ηb

χb1χb0

Mass=9.63GeV  (exp. 9.46GeV)            Mass=9.55GeV (exp. 9.39GeV)

Mass=10.18GeV (exp. 9.86GeV)          Mass=10.44GeV (exp. 9.89GeV)
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Bottomonia at finite temperature

χb1

ηbΥ

χb0

disappear at T >2.3Tc                      disappear at T >2.1Tc

disappear at T=1.3-2.5Tc                 disappear at T < 2.5Tc

ー
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Bottomonia at finite temperature

• The bbbar mesons survive at higher temperatures than the 
charmonia, because the gluon condensate terms of the sum 
rule are suppressed by 1/mb2 factor.

• The obtained Upsilon spectral function is found to contain 
contributions of the Y(1s), Y(2s) and Y(3s) states. We cannot 
separate individual states in our method.

Υ

 Υ(1S), Υ(2S) and Υ(3S)
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Bottomonia at finite temperature

The residue of the Υ peak decreases as T increases, which 
suggests that the excited states (2S, 3S) melt away at 1.5-2.0Tc, 
while the ground state(1S) survives further.

Υ(1S+2S+3S)

Υ(1S) only?
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Conclusion
• We have formulated a novel method for the analysis of the 

QCD sum rules using the Maximum Entropy Method 
(MEM). The spectral functions can be extracted directly 
from the sum rule without parametrizing them in a 
functional form such as pole+continuum.

• We have applied the new method to the analysis of the 
finite temperature quarkonium spectrum and found that 
the quarkonium peaks indeed disappear due to the rapid 
change of the gluon condensates at above Tc.

• The peaks of quarkonia disappear at temperatures,

27

J/Ψ ηc χc0 χc1

1.2 Tc 1.1-1.2 Tc 1.0-1.1 Tc 1.0-1.1 Tc

Υ ηb χb0 χb1

> 2.3 Tc > 2.1 Tc 1.3-2.5 Tc < 2.5 Tc
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Conclusion
• The bbbar mesons survive at higher temperatures than the 

charmonia, because they are less sensitive to the changes 
of the gluon condensates. 

• The results are consistent with the picture in which the 
bottomonium excited states Υ(2S,3S) melt away at lower 
temperatures than the ground state Υ(1S).
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The lighter quarkonia melt at a lower T, while the heavier 
ones melt at a higher T → Thermometer for the QGP 

by H. Satz


