Roy–Steiner equations for πN scattering

C. Ditsche¹ M. Hoferichter¹ B. Kubis¹ U.-G. Meißner^{1,2}

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and
 Bethe Center for Theoretical Physics, Universität Bonn
 Institut für Kernphysik, Institute for Advanced Simulation, and
 Jülich Center for Hadron Physics, Forschungszentrum Jülich

7th International Workshop on Chiral Dynamics 2012 Jefferson Lab, August 8th

[JHEP 1206 (2012) 043]

Outline

- **1** Motivation: Why Roy–Steiner equations for πN scattering?
- 2 Warm-up: Roy equations for $\pi\pi$ scattering
- $\ \ \,$ πN scattering basics
- A Roy-Steiner equations for πN scattering
- 5 Solving the t-channel Muskhelishvili–Omnès problem
- Summary & Outlook

Motivation: Why πN scattering? Why Roy–Steiner equations?

- Renewed interest in πN scattering:
 - $\pi N \rightarrow \pi N$ amplitudes e.g. for σ -term physics
 - $\bar{N}N \to \pi\pi$ crossed amplitudes e.g. for nucleon form factors
 - ⇒ Need esp. low-energy (pseudophysical) amplitudes which are not very well known

Motivation: Why πN scattering? Why Roy–Steiner equations?

- Renewed interest in πN scattering:
 - $\pi N \rightarrow \pi N$ amplitudes e.g. for σ -term physics
 - $\bar{N}N \to \pi\pi$ crossed amplitudes e.g. for nucleon form factors
 - ⇒ Need esp. low-energy (pseudophysical) amplitudes which are not very well known

```
Roy(-Steiner) equations = Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry
```

- PW(H)DRs together with unitarity, crossing symmetry, and chiral symmetry
 - ⇒ Can study processes at low energies with high precision:
 - $\pi\pi$ scattering: [Ananthanarayan et al. (2001), García-Martín et al. (2011)]
 - πK scattering: [Büttiker et al. (2004)]
 - $\gamma\gamma \to \pi\pi$ scattering: [Hoferichter et al. (2011)]

Motivation: Why πN scattering? Why Roy–Steiner equations?

- Renewed interest in πN scattering:
 - $\pi N \to \pi N$ amplitudes e.g. for σ -term physics
 - $\bar{N}N \to \pi\pi$ crossed amplitudes e.g. for nucleon form factors
 - \Rightarrow Need esp. low-energy (pseudophysical) amplitudes which are not very well known

```
Roy(-Steiner) equations = Partial-Wave (Hyberbolic) Dispersion Relations coupled by unitarity and crossing symmetry
```

- PW(H)DRs together with unitarity, crossing symmetry, and chiral symmetry
 - ⇒ Can study processes at low energies with high precision:
 - $\pi\pi$ scattering: [Ananthanarayan et al. (2001), García-Martín et al. (2011)]
 - πK scattering: [Büttiker et al. (2004)]
 - $\gamma\gamma \to \pi\pi$ scattering: [Hoferichter et al. (2011)]
- ightharpoonup Roy–Steiner equations for πN scattering:
 - Obtain low-energy (pseudophysical) amplitudes with better precision (update input & give errors)
 - Framework allows for systematic improvements (subtractions, higher partial waves, ...)

Warm-up: Roy equations for $\pi\pi$ scattering (1)

- $\pi\pi \to \pi\pi$ is fully crossing symmetric in Mandelstam variables $s, t, and u = 4M_\pi^2 s t$
- Roy equations respect all available symmetry constraints:
 Lorentz invariance, unitarity, isospin & crossing symmetry, and (maximal) analyticity

Warm-up: Roy equations for $\pi\pi$ scattering (1)

- $\pi\pi \to \pi\pi$ is fully crossing symmetric in Mandelstam variables s, t, and $u=4M_\pi^2-s-t$
- Roy equations respect all available symmetry constraints:
 Lorentz invariance, unitarity, isospin & crossing symmetry, and (maximal) analyticity
- Start from twice-subtracted fixed-t DRs of the generic form $\hookrightarrow s + t + u = 4M_{\pi}^2 = s' + t + u'$

$$T(s,t) = \frac{c(t)}{t} + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \left\{ \frac{s^{2}}{s'-s} + \frac{u^{2}}{s'-u} \right\} \operatorname{Im} T(s',t)$$

- Determine subtraction functions c(t) via crossing symmetry
- PW expansion $(I \in \{0,1,2\}, J = \ell)$: $T^I(s,t) = 32\pi \sum_{J=0}^{\infty} (2J+1)P_J(\cos\theta(s,t)) t_J^I(s)$
- PW decomposition of these DRs yields the Roy equations [Roy (1971)]

$$t_{J}^{I}(s) = k_{J}^{I}(s) + \frac{1}{\pi} \sum_{l'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} ds' K_{JJ'}^{IJ'}(s, s') \operatorname{Im} t_{J'}^{I'}(s')$$

• Kernels: analytically known, contain Cauchy kernel $K^{II'}_{JJ'}(s,s')=rac{\delta^{II'}\delta_{JJ'}}{s'-s}+\dots$

Warm-up: Roy equations for $\pi\pi$ scattering (2)

$$t_{J}^{I}(s) = \mathbf{k}_{J}^{I}(s) + \frac{1}{\pi} \sum_{I'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}s' K_{JJ'}^{II'}(s,s') \operatorname{Im} t_{J'}^{I'}(s')$$

- Validity: $4\,M_\pi^2 \le s \le 60\,M_\pi^2 \approx (1.08\,\mathrm{GeV})^2 \quad \hookrightarrow \mathrm{Mandelstam} \; \mathrm{analyticity} \Rightarrow s \le 68\,M_\pi^2 \approx (1.15\,\mathrm{GeV})^2$
- Subtraction constants (free parameters) contained in $k_J^I(s)$: $\pi\pi$ scattering lengths \Rightarrow Matching to Chiral Perturbation Theory [Colangelo et al. (2001)]

Warm-up: Roy equations for $\pi\pi$ scattering (2)

$$t_{J}^{I}(s) = k_{J}^{I}(s) + \frac{1}{\pi} \sum_{l'=0}^{2} \sum_{J'=0}^{\infty} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}s' K_{JJ'}^{II'}(s,s') \operatorname{Im} t_{J'}^{I'}(s')$$

- $\bullet \ \ \text{Validity:} \quad 4\,M_\pi^2 \leq s \leq 60\,M_\pi^2 \approx (1.08\,\text{GeV})^2 \quad \hookrightarrow \text{Mandelstam analyticity} \\ \Rightarrow s \leq 68\,M_\pi^2 \approx (1.15\,\text{GeV})^2$
- Subtraction constants (free parameters) contained in $k_J^I(s)$: $\pi\pi$ scattering lengths \Rightarrow Matching to Chiral Perturbation Theory [Colangelo et al. (2001)]
- ullet Elastic unitarity leads to coupled integral equations for the phase shifts $\delta^I_J(s)$

$$\begin{split} & \operatorname{Im} t_J^I(s) = \sigma^\pi(s) \left| t_J^I(s) \right|^2 \theta \left(t - 4 M_\pi^2 \right) \\ \Rightarrow & \sigma^\pi(s) t_J^I(s) = \frac{e^{2i\delta_J^I(s)} - 1}{2i} = \sin \delta_J^I(s) \, e^{i\delta_J^I(s)} \\ & \sigma^\pi(s) = \sqrt{1 - \frac{4 M_\pi^2}{s}} \end{split}$$

πN scattering basics

- Generically: $\pi^a(q) + N(p) \rightarrow \pi^b(q') + N(p')$
- Kinematics:

$$\begin{split} s &= (p+q)^2 \;, \quad t = (p-p')^2 \;, \quad u = (p-q')^2 \\ u &= 2(m^2 + M_\pi^2) - s - t \;, \qquad \nu = \frac{s-u}{4m} \end{split}$$

Isospin structure:

$$T^{ba} = \delta^{ba}T^{+} + i\epsilon^{bac}\tau^{c}T^{-}$$

• Lorentz structure $(I \in \{+, -\})$:

$$T^{I} = \bar{u}(p') \left\{ A^{I} + \frac{q'+q}{2} B^{I} \right\} u(p)$$

Crossing symmetry relates amplitudes for

s-/*u*-channel (
$$\pi N \to \pi N$$
) and *t*-channel ($\bar{N}N \to \pi \pi$),

crossing even and odd amplitudes:
$$A^\pm(\nu,t)=\pm A^\pm(-\nu,t)$$
 , $B^\pm(\nu,t)=\mp B^\pm(-\nu,t)$

πN scattering basics: Subthreshold expansion

- Subtraction of pseudovector Born terms: $X \mapsto \bar{X}$
- $D^{\pm} = A^{\pm} + \nu B^{\pm}$
- Expand crossing even amplitudes

$$\begin{split} X^I(\nu^2,t) \in \left\{ \bar{A}^+, \frac{\bar{A}^-}{\nu}, \frac{\bar{B}^+}{\nu}, \bar{B}^-, \bar{D}^+, \frac{\bar{D}^-}{\nu} \right\} \\ \text{around subthreshold point } \nu = t = 0 \end{split}$$

$$X^{I}(\nu^{2},t) = \sum_{m,n=0}^{\infty} x_{mn}^{I}(\nu^{2})^{m} t^{n}$$

• PWs allow for easy incorporation of unitarity constraints

- s-channel PW projection: $z_s = \cos \theta_s$, $W = \sqrt{s}$ $\mathcal{A}_{\ell}^I(s) = \int\limits_{-1}^1 \mathrm{d}z_s \; P_{\ell}(z_s) \mathcal{A}^I(s,t) \big|_{t=t(s,z_s)}$ $f_{\ell\pm}^I(W) = \frac{1}{16\pi W} \Big\{ (E+m) \big[A_{\ell}^I(s) + (W-m) B_{\ell}^I(s) \big] + (E-m) \big[-A_{\ell\pm1}^I(s) + (W+m) B_{\ell\pm1}^I(s) \big] \Big\}$
- MacDowell symmetry: $f_{\ell+}^I(W) = -f_{(\ell+1)-}^I(-W) \quad \forall \ell \geq 0$ [MacDowell (1959)]

- s-channel PW projection: $z_s = \cos \theta_s$, $W = \sqrt{s}$ $\mathcal{A}_{\ell}^{I}(s) = \int_{-1}^{1} \mathrm{d}z_s \; P_{\ell}(z_s) \mathcal{A}^{I}(s,t) \big|_{t=t(s,z_s)}$ $f_{\ell\pm}^{I}(W) = \frac{1}{16\pi W} \Big\{ (E+m) \big[A_{\ell}^{I}(s) + (W-m) B_{\ell}^{I}(s) \big] + (E-m) \big[-A_{\ell\pm1}^{I}(s) + (W+m) B_{\ell\pm1}^{I}(s) \big] \Big\}$
- MacDowell symmetry: $f_{\ell+}^I(W) = -f_{(\ell+1)-}^I(-W) \quad orall \ \ell \geq 0$ [MacDowell (1959)]
- *t*-channel PW expansion: $z_t = \cos \theta_t$

$$A^{I}(s,t)\big|_{s=s(t,z_{t})} = -\frac{4\pi}{p_{t}^{2}} \sum_{J} (2J+1)(p_{t}q_{t})^{J} \Big\{ P_{J}(z_{t}) f_{+}^{J}(t) - \frac{m}{\sqrt{J(J+1)}} z_{t} P_{J}(z_{t}) f_{-}^{J}(t) \Big\}$$

$$B^{I}(s,t)\big|_{s=s(t,z_{t})} = 4\pi \sum_{J>0} \frac{2J+1}{\sqrt{J(J+1)}} (p_{t}q_{t})^{J-1} P_{J}(z_{t}) f_{-}^{J}(t)$$

• G-parity \Rightarrow even J for $I = + (I_t = 0)$, odd J for $I = - (I_t = 1)$

- s-channel PW projection: $z_s = \cos \theta_s$, $W = \sqrt{s}$ $\mathcal{A}_{\ell}^{I}(s) = \int_{-1}^{1} \mathsf{d}z_s \ P_{\ell}(z_s) \mathcal{A}^{I}(s,t) \big|_{t=t(s,z_s)}$ $f_{\ell+1}^{I}(W) = \frac{1}{16\pi W} \Big\{ (E+m) \big[A_{\ell}^{I}(s) + (W-m) B_{\ell}^{I}(s) \big] + (E-m) \big[-A_{\ell+1}^{I}(s) + (W+m) B_{\ell+1}^{I}(s) \big] \Big\}$
- MacDowell symmetry: $f_{\ell+}^I(W) = -f_{(\ell+1)-}^I(-W) \quad \forall \, \ell \geq 0$ [MacDowell (1959)]
- *t*-channel PW expansion: $z_t = \cos \theta_t$

$$A^{I}(s,t)\big|_{s=s(t,z_{t})} = -\frac{4\pi}{p_{t}^{2}} \sum_{J} (2J+1)(p_{t}q_{t})^{J} \Big\{ P_{J}(z_{t}) f_{+}^{J}(t) - \frac{m}{\sqrt{J(J+1)}} z_{t} P_{J}(z_{t}) f_{-}^{J}(t) \Big\}$$

$$B^{I}(s,t)\big|_{s=s(t,z_{t})} = 4\pi \sum_{J>0} \frac{2J+1}{\sqrt{J(J+1)}} (p_{t}q_{t})^{J-1} P_{J}(z_{t}) f_{-}^{J}(t)$$

- G-parity \Rightarrow even J for $I = + (I_t = 0)$, odd J for $I = (I_t = 1)$
- s-channel PW expansion and t-channel PW projection in analogy

Roy-Steiner equations for πN scattering: Hyperbolic DRs

• (Unsubtracted) Hyperbolic DRs: (s-a)(u-a) = b = (s'-a)(u'-a) with $a, b \in \mathbb{R} \Rightarrow b = b(s, t, a)$

$$A^{+}(s,t) = \frac{1}{\pi} \int_{(m+M_{\pi})^{2}}^{\infty} \frac{\mathrm{d}s'}{\left[\frac{1}{s'-s} + \frac{1}{s'-u} - \frac{1}{s'-a}\right]} \operatorname{Im} A^{+}(s',t') + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{\mathrm{d}t'}{t'} \frac{\operatorname{Im} A^{+}(s',t')}{t'-t}$$

$$B^{+}(s,t) = N^{+}(s,t) + \frac{1}{\pi} \int_{(m+M_{\pi})^{2}}^{\infty} \mathbf{d}s' \left[\frac{1}{s'-s} - \frac{1}{s'-u} \right] \operatorname{Im} B^{+}(s',t') + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathbf{d}t' \frac{\nu}{\nu'} \frac{\operatorname{Im} B^{+}(s',t')}{t'-t}$$

$$N^{+}(s,t) = g^{2} \left[\frac{1}{m^{2} - s} - \frac{1}{m^{2} - u} \right]$$

 $N^+(s,t) = g^2 \left[\frac{1}{m^2-s} - \frac{1}{m^2-u} \right] \qquad \text{ and similarly for } A^-, B^-, N^- \quad \text{[Hite/Steiner (1973)]}$

Roy–Steiner equations for πN scattering: Hyperbolic DRs

• (Unsubtracted) Hyperbolic DRs: $\hookrightarrow (s-a)(u-a) = b = (s'-a)(u'-a)$ with $a, b \in \mathbb{R} \implies b = b(s, t, a)$

$$A^{+}(s,t) = \frac{1}{\pi} \int_{(m+M_{\pi})^{2}}^{\infty} \frac{\mathrm{d}s'}{\left[\frac{1}{s'-s} + \frac{1}{s'-u} - \frac{1}{s'-a}\right]} \operatorname{Im} A^{+}(s',t') + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}t' \frac{\operatorname{Im} A^{+}(s',t')}{t'-t}$$

$$B^{+}(s,t) = N^{+}(s,t) + \frac{1}{\pi} \int_{(m+M_{\pi})^{2}}^{\infty} \mathbf{d}s' \left[\frac{1}{s'-s} - \frac{1}{s'-u} \right] \operatorname{Im} B^{+}(s',t') + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathbf{d}t' \frac{\nu}{\nu'} \frac{\operatorname{Im} B^{+}(s',t')}{t'-t}$$

$$N^+(s,t) = g^2 \left[\frac{1}{m^2-s} - \frac{1}{m^2-u} \right] \qquad \text{and similarly for A^-, B^-, N^- [Hite/Steiner (1973)]}$$

- Why HDRs?

 - Imaginary parts are only needed in regions where the corresponding PW decompositions converge
 - Range of convergence can be maximized by tuning the free hyperbola parameter a
 - Especially powerful for the determination of the σ -term [Koch (1982)]

Roy–Steiner equations for πN scattering: Hyperbolic DRs

• (Unsubtracted) Hyperbolic DRS: $\hookrightarrow (s-a)(u-a) = b = (s'-a)(u'-a)$ with $a, b \in \mathbb{R} \Rightarrow b = b(s, t, a)$

$$A^{+}(s,t) = \frac{1}{\pi} \int\limits_{(m+M_{\pi})^{2}}^{\infty} \mathbf{ds'} \left[\frac{1}{s'-s} + \frac{1}{s'-u} - \frac{1}{s'-a} \right] \operatorname{Im} A^{+}(s',t') + \frac{1}{\pi} \int\limits_{4M_{\pi}^{2}}^{\infty} \mathbf{dt'} \frac{\operatorname{Im} A^{+}(s',t')}{t'-t}$$

$$B^{+}(s,t) = N^{+}(s,t) + \frac{1}{\pi} \int_{(m+M_{\pi})^{2}}^{\infty} \frac{\mathrm{d}s'}{\left[\frac{1}{s'-s} - \frac{1}{s'-u}\right]} \operatorname{Im} B^{+}(s',t') + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{\mathrm{d}t'}{\nu'} \frac{\nu}{t'-t} \frac{\operatorname{Im} B^{+}(s',t')}{t'-t}$$

$$N^+(s,t) = g^2 \left[\frac{1}{m^2-s} - \frac{1}{m^2-u} \right] \qquad \text{and similarly for A^-, B^-, N^- [Hite/Steiner (1973)]}$$

- Why HDRs?

 - Imaginary parts are only needed in regions where the corresponding PW decompositions converge
 - Range of convergence can be maximized by tuning the free hyperbola parameter a
 - Especially powerful for the determination of the σ -term [Koch (1982)]
- How to derive closed Roy-Steiner system of PWHDRs:
 - Expand s-/t-channel imaginary parts of HDRs in s-/t-channel PWs, respectively
 - Project nucleon pole terms and all imaginary parts onto both s- and t-channel PWs
 - Combine resulting RS equations with the s- & t-channel (extended) PW unitarity relations

Roy–Steiner equations for πN scattering: s-channel RS equations

s-channel PW projection of pole terms and s-/t-channel-PW-expanded imaginary parts
 (unsubtracted) s-channel RS equations:

$$\begin{split} f_{\ell+}^{I}(W) &= N_{\ell+}^{I}(W) + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathrm{d}t' \sum_{J} \left\{ G_{\ell J}(W,t') \operatorname{Im} f_{+}^{J}(t') + H_{\ell J}(W,t') \operatorname{Im} f_{-}^{J}(t') \right\} \\ &+ \frac{1}{\pi} \int_{m+M_{\pi}}^{\infty} \mathrm{d}W' \sum_{\ell'=0}^{\infty} \left\{ K_{\ell \ell'}^{I}(W,W') \operatorname{Im} f_{\ell'+}^{I}(W') + K_{\ell \ell'}^{I}(W,-W') \operatorname{Im} f_{(\ell'+1)-}^{I}(W') \right\} \\ &= -f_{(\ell+1)-}^{I}(-W) \quad \forall \, \ell \geq 0 \quad \text{[Hite/Steiner (1973)]} \end{split}$$

- ullet Kernels: analytically known, e.g. $K^I_{\ell\ell'}(W,W')=rac{\delta_{\ell\ell'}}{W'-W}+\dots$
- Validity: \hookrightarrow above threshold, assuming Mandelstam analyticity $a=-23.19\,M_\pi^2$ \Rightarrow $s\in \left[(m+M_\pi)^2=59.64\,M_\pi^2,97.30\,M_\pi^2\right]$ \Leftrightarrow $W\in \left[m+M_\pi=1.08\,\mathrm{GeV},1.38\,\mathrm{GeV}\right]$

Roy–Steiner equations for πN scattering: t-channel RS equations

t-channel PW projection of pole terms and s-/t-channel-PW-expanded imaginary parts
 (unsubtracted) t-channel RS equations:

$$\begin{split} f_{+}^{J \geq 0}(t) &= \tilde{N}_{+}^{J}(t) + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathsf{d}t' \sum_{J'} \left\{ \tilde{K}_{JJ'}^{1}(t,t') \, \mathsf{Im} f_{+}^{J'}(t') + \tilde{K}_{JJ'}^{2}(t,t') \, \mathsf{Im} f_{-}^{J'}(t') \right\} \\ &+ \frac{1}{\pi} \int_{m+M_{\pi}}^{\infty} \mathsf{d}W' \sum_{\ell=0}^{\infty} \left\{ \tilde{G}_{J\ell}(t,W') \, \mathsf{Im} f_{\ell+}^{J}(W') + \tilde{G}_{J\ell}(t,-W') \, \mathsf{Im} f_{(\ell+1)-}^{J}(W') \right\} \\ f_{-}^{J \geq 1}(t) &= \tilde{N}_{-}^{J}(t) + \frac{1}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \mathsf{d}t' \sum_{J' > 0} \tilde{K}_{JJ'}^{3}(t,t') \, \mathsf{Im} f_{-}^{J'}(t') \\ &+ \frac{1}{\pi} \int_{m+M_{\pi}}^{\infty} \mathsf{d}W' \sum_{\ell=0}^{\infty} \left\{ \tilde{H}_{J\ell}(t,W') \, \mathsf{Im} f_{\ell+}^{J}(W') + \tilde{H}_{J\ell}(t,-W') \, \mathsf{Im} f_{(\ell+1)-}^{J}(W') \right\} \end{split}$$

- Kernels analytically known, e.g. $\tilde{K}^1_{JJ'}(t,t')=rac{\delta_{JJ'}}{t'-t}+\dots$, $\tilde{K}^3_{JJ'}(t,t')=rac{\delta_{JJ'}}{t'-t}+\dots$
- Validity: \hookrightarrow above pseudothreshold, assuming Mandelstam analyticity $a=-2.71\,M_\pi^2 \Rightarrow t \in \left[4M_\pi^2, 205.45\,M_\pi^2\right] \Leftrightarrow \sqrt{t} \in \left[2M_\pi=0.28\,\text{GeV}, 2.00\,\text{GeV}\right]$

Roy–Steiner equations for πN scattering: Unitarity relations

• s-channel unitarity relations ($I_s \in \{1/2, 3/2\}$):

$$\operatorname{Im} f_{\ell \pm}^{I_s}(W) = q_s \left| f_{\ell \pm}^{I_s}(W) \right|^2 \theta \left(W - (m + M_{\pi}) \right) + \frac{1 - \left[\eta_{\ell \pm}^{I_s}(W) \right]^2}{4q_s} \theta \left(W - (m + 2M_{\pi}) \right)$$

Roy–Steiner equations for πN scattering: Unitarity relations

• s-channel unitarity relations ($I_s \in \{1/2, 3/2\}$):

$$\operatorname{Im} f_{\ell \pm}^{I_{s}}(W) = q_{s} \left| f_{\ell \pm}^{I_{s}}(W) \right|^{2} \theta \left(W - (m + M_{\pi}) \right)$$
$$+ \frac{1 - \left[\eta_{\ell \pm}^{I_{s}}(W) \right]^{2}}{4q_{s}} \theta \left(W - (m + 2M_{\pi}) \right)$$

• *t*-channel (extended) unitarity relations: \hookrightarrow (2-body intermediate states: $\pi\pi$ & $\overline{K}K + \dots$)

$$\operatorname{Im} f_{\pm}^{J}(t) = \sigma_{t}^{\pi} (t_{J}^{I}(t))^{*} f_{\pm}^{J}(t) \theta(t - 4M_{\pi}^{2}) + c_{J} 2\sqrt{2} k_{t}^{2J} \sigma_{t}^{K} (g_{J}^{I}(t))^{*} h_{\pm}^{J}(t) \theta(t - 4M_{K}^{2}) + \dots$$

- Only linear in $f_+^J(t) \Rightarrow$ less restrictive
- Watson's theorem: $\arg f_{\pm}^I(t) = \delta_J^I(t)$ [Watson (1954)] \hookrightarrow for $t < 16\,M_\pi^2 \lesssim 40\,M_\pi^2 \approx (0.88\,\mathrm{GeV})^2$

Roy–Steiner equations for πN scattering: Recoupling schemes

• *s*-channel **subproblem**:

- Kernels are diagonal for $I \in \{+, -\}$, but unitarity relations are diagonal for $I_s \in \{1/2, 3/2\}$
 - ⇒ All PWs are interrelated
- Once the t-channel PWs are known
 - \Rightarrow Structure similar to $\pi\pi$ Roy equations

Roy–Steiner equations for πN scattering: Recoupling schemes

• *s*-channel **subproblem**:

- Kernels are diagonal for $I \in \{+, -\}$, but unitarity relations are diagonal for $I_s \in \{1/2, 3/2\}$
 - ⇒ All PWs are interrelated
- Once the t-channel PWs are known
 - \Rightarrow Structure similar to $\pi\pi$ Roy equations

• *t*-channel **subproblem**:

- Only higher PWs couple to lower ones
- Only PWs with even or odd J are coupled
- No contribution from $f_{+}^{J'}$ to f_{-}^{J}
- ⇒ Leads to Muskhelishvili–Omnès problem

Roy–Steiner equations for πN scattering: t-channel subproblem (1)

- Linear combinations $\Gamma^{J}(t) = m\sqrt{\frac{J}{J+1}}f_{-}^{J}(t) f_{+}^{J}(t) \quad \forall J \geq 1$
- (unsubtracted) t-channel subproblem can be written as

$$f_{+}^{0}(t) = \Delta_{+}^{0}(t) + \frac{t - 4m^{2}}{\pi} \int_{4M^{2}}^{\infty} dt' \frac{\text{Im} f_{+}^{0}(t')}{(t' - 4m^{2})(t' - t)} \qquad \left[f_{+}^{0}(4m^{2}) = 0 \right]$$

$$\mathbf{\Gamma}^{J \geq 1}(t) = \Delta_{\mathbf{\Gamma}}^{J}(t) + \frac{t - 4m^2}{\pi} \int_{4M_{\pi}^2}^{\infty} dt' \frac{\operatorname{Im} \mathbf{\Gamma}^{J}(t')}{(t' - 4m^2)(t' - t)} \qquad \left[\Gamma^{J}(4m^2) = 0 \right]$$

$$f_{-}^{J \ge 1}(t) = \Delta_{-}^{J}(t) + \frac{1}{\pi} \int_{4M^2}^{\infty} dt' \frac{\text{Im} f_{-}^{J}(t')}{t' - t}$$

with
$$\operatorname{Im} f_{+}^{J}(t) = \sigma_{t}^{\pi} (t_{J}^{I}(t))^{*} f_{+}^{J}(t) \theta(t - 4M_{\pi}^{2}) + \dots$$

• Inhomogeneities $\Delta(t)$: Born terms, s-channel integrals, and higher t-channel PWs; e.g.

Roy–Steiner equations for πN scattering: *t*-channel subproblem (2)

- In the low-energy (pseudophysical) region:
 - Only the lowest s-/t-channel PWs are relevant
 - Can match amplitudes to ChPT [Büttiker/Meißner (2000), Becher/Leutwyler (2001), ...]
 - Neglect inelasticities in both the $\pi\pi$ and the *t*-channel PWs $\hookrightarrow \eta_I^I(t) = 1$ & no $\overline{KK} + \dots$
 - ⇒ Watsons's theorem, single-channel approximation of *t*-channel subproblem

Roy–Steiner equations for πN scattering: t-channel subproblem (2)

- In the low-energy (pseudophysical) region:
 - Only the lowest s-/t-channel PWs are relevant
 - Can match amplitudes to ChPT [Büttiker/Meißner (2000), Becher/Leutwyler (2001), ...]
 - Neglect inelasticities in both the $\pi\pi$ and the *t*-channel PWs $\hookrightarrow \eta_J^I(t) = 1 \& \text{no } \overline{K}K + \dots$ \Rightarrow Watsons's theorem, single-channel approximation of *t*-channel subproblem
- ightarrow (Single-channel) Muskhelishvili-Omnès problem with finite matching point $t_{
 m m}$

[Muskhelishvili (1953), Omnès (1958), Büttiker et al. (2004)]

$$f(t) = \Delta(t) + \frac{1}{\pi} \int_{4M_{\pi}^2}^{t_{\text{m}}} dt' \frac{\sin \delta(t')e^{-i\delta(t')}f(t')}{t'-t} + \frac{1}{\pi} \int_{t_{\text{m}}}^{\infty} dt' \frac{\text{Im}f(t')}{t'-t} \equiv |f(t)|e^{i\delta(t)} \quad \text{for } t \leq t_{\text{m}} < t_{\text{inel}}$$

- Solving for |f(t)| in $4M_{\pi}^2 \le t \le t_{\text{m}}$ requires: $\delta(t)$ for $4M_{\pi}^2 \le t \le t_{\text{m}}$ & Im f(t) for $t \ge t_{\text{m}}$
- Solution via once-subtracted Omnès function with $t_{\rm m} < \infty \rightarrow \Omega(0) = 1$

$$\Omega(t) = \exp\left\{\frac{t}{\pi} \int_{4M_{\pi}^{2}}^{t_{m}} \frac{dt'}{t'} \frac{\delta(t')}{t'-t}\right\} = \exp\left\{\frac{t}{\pi} \int_{4M_{\pi}^{2}}^{t_{m}} \frac{dt'}{t'} \frac{\delta(t')}{t'-t}\right\} e^{i\delta(t)\theta(t-4M_{\pi}^{2})\theta(t_{m}-t)}$$

Roy–Steiner equations for πN scattering: Subtractions

- In general: Subtractions

 - Can be introduced to lessen the dependence of the low-energy solution on the high-energy behavior

Roy–Steiner equations for πN scattering: Subtractions

- In general: Subtractions
 - May be necessary to ensure the convergence of DR/MO integrals

 → asymptotic behavior
 - Can be introduced to lessen the dependence of the low-energy solution on the high-energy behavior
- Favorable choice for *t*-channel MO problem: subthreshold expansion around $\nu=t=0$
 - Subtract HDRs for A^{\pm} and B^{\pm} at $s=u=m^2+M_{\pi}^2$ and t=0
 - ullet Done up to full second order; added (partial) third subtraction for A^\pm
 - \Rightarrow Obtain sum rules for subthreshold parameters x_{mn}^{I}
 - ⇒ General structure of RS/MO problem remains unchanged
- HDRs \Rightarrow s-/t-channel RS equations (pole terms & kernels) \Rightarrow t-channel MO problem,
 - e.g. for *P*-waves $(n \ge 1)$:

$$\Gamma^{1}(t) = \Delta_{\Gamma}^{1}(t) \Big|^{n-\text{sub}} + \frac{t^{n-1}(t-4m^{2})}{\pi} \int_{4M_{\pi}^{2}}^{\infty} dt' \frac{\text{Im } \Gamma^{1}(t')}{t'^{n-1}(t'-4m^{2})(t'-t)}$$

$$f_{-}^{1}(t) = \Delta_{-}^{1}(t)|^{n\text{-sub}} + \frac{t^{n}}{\pi} \int_{4M_{-}^{2}}^{\infty} dt' \frac{\text{Im} f_{-}^{1}(t')}{t'^{n}(t'-t)}$$

Roy–Steiner equations for πN scattering: Solution strategy

t-channel Muskhelishvili-Omnès problem: Input

- Here, show results for the P-waves, since
 - ullet S-wave: Strong effect from $\bar{K}K$ intermediate states $(f_0(980)$ resonance)
 - ⇒ need two-channel MO analysis ⇒ following talk
 - P-waves: Single-channel MO approximation well justified in the low-energy region
 - ullet D-waves: Dominated by nucleon pole terms \hookrightarrow in general for all PWs for $t o 4 M_\pi^2$
- First step: Check consistency with KH80 t-channel PWs

 → iteration with s-channel results t.b.d.

t-channel Muskhelishvili-Omnès problem: Input

- Here, show results for the P-waves, since
 - S-wave: Strong effect from K̄K intermediate states (f₀(980) resonance)
 ⇒ need two-channel MO analysis ⇒ following talk
 - P-waves: Single-channel MO approximation well justified in the low-energy region
 - ullet D-waves: Dominated by nucleon pole terms \hookrightarrow in general for all PWs for $t o 4 M_\pi^2$
- Input used:
 - $\pi\pi$ phase shifts δ_I^I [Caprini/Colangelo/Leutwyler (in preparation)]
 - s-channel: SAID PWs [Arndt et al. (2008)] for $W \le 2.5$ GeV, above: Regge model [Huang et al. (2010)]
 - KH80 [Höhler (1983)] subthreshold parameters & coupling $g^2/(4\pi)=14.28$ \hookrightarrow modern value: $g^2/(4\pi)=13.7\pm0.2$ [Baru et al. (2011)]
 - *t*-channel: All contributions above $t_m = 0.98$ GeV set to zero \Rightarrow solutions fixed $f_I^I(t_m) = 0$

t-channel Muskhelishvili-Omnès problem: P-waves

- f_{+}^{J} less well determined in MO framework than f_{-}^{J} , since
 - ullet Effectively one subtraction less \Rightarrow introduced partial third subtraction
 - Enhanced sensitivity to subtraction constants $\hookrightarrow \tilde{N}^0_+(4M_\pi^2) = \tilde{N}^J_\Gamma(4M_\pi^2) = 0$
- Estimate systematic uncertainties (1): "fixed-t limit" $|a| \to \infty$ \hookrightarrow modulo t-channel integrals

- Estimate systematic uncertainties (2): Variation of the matching point $t_m \Rightarrow$ similar...
- ➤ MO solutions in general consistent with KH80 results

t-channel Muskhelishvili-Omnès problem: Isovector spectral functions

P-waves feature in dispersive analyses of the Sachs form factors of the nucleon:

$$\operatorname{Im} G_{E}^{v}(t) = \frac{q_{1}^{3}}{m\sqrt{t}} (F_{\pi}^{V}(t))^{*} f_{+}^{1}(t) \theta(t - 4M_{\pi}^{2}) \qquad \operatorname{Im} G_{M}^{v}(t) = \frac{q_{1}^{3}}{\sqrt{2t}} (F_{\pi}^{V}(t))^{*} f_{-}^{1}(t) \theta(t - 4M_{\pi}^{2})$$

$$\operatorname{Im} G_{M}^{\nu}(t) = \frac{q_{t}^{3}}{\sqrt{2t}} (F_{\pi}^{V}(t))^{*} f_{-}^{1}(t) \theta(t - 4M_{\pi}^{2})$$

Summary & Outlook

- What has been done:
 - Derived a closed system of Roy-Steiner equations (PWHDRS) for πN scattering
 - Constructed unitarity relations including \overline{KK} intermediate states for the *t*-channel PWs
 - Optimized the range of convergence by tuning a for s- and t-channel each
 - Implemented subtractions at several orders
 - Solved the t-channel (single-channel) MO problem
 - ➤ t-channel RS/MO machinery works

 → modulo the S-wave

Summary & Outlook

- What has been done:
 - Derived a closed system of Roy-Steiner equations (PWHDRS) for πN scattering
 - Constructed unitarity relations including KK intermediate states for the t-channel PWs
 - Optimized the range of convergence by tuning a for s- and t-channel each
 - Implemented subtractions at several orders
 - Solved the t-channel (single-channel) MO problem
- What needs to be done:
 - Two-channel MO analysis for the S-wave, effect on scalar form factor ⇒ following talk
 - Numerical solution of the s-channel subproblem using the t-channel results as input
 - Self-consistent, iterative solution of the full RS system ⇒ lowest PWs & low-energy parameters
 - Possible improvements: Higher subtractions, higher PWs, more inelastic input, ...

πN scattering basics

- Generically: $\pi^a(q) + N(p) \rightarrow \pi^b(q') + N(p')$
- Kinematics:

$$\begin{split} s &= (p+q)^2 \;, \quad t = (p-p')^2 \;, \quad u = (p-q')^2 \\ u &= 2(m^2 + M_\pi^2) - s - t \;, \qquad \nu = \frac{s-u}{4m} \end{split}$$

Isospin structure:

$$T^{ba} = \delta^{ba}T^+ + i\epsilon^{bac}\tau^cT^-$$

• Lorentz structure ($I \in \{+, -\}$):

$$T^{I} = \bar{u}(p') \left\{ A^{I} + \frac{q'+q}{2} B^{I} \right\} u(p)$$

Crossing symmetry relates amplitudes for

s-/u-channel ($\pi N \to \pi N$) and t-channel ($\bar{N}N \to \pi \pi$),

crossing even and odd amplitudes:
$$A^\pm(\nu,t)=\pm A^\pm(-\nu,t)$$
 , $B^\pm(\nu,t)=\mp B^\pm(-\nu,t)$

πN scattering basics: Subthreshold expansion

- Subtraction of pseudovector Born terms: $X \mapsto \bar{X}$
- $D^{\pm} = A^{\pm} + \nu R^{\pm}$
- Expand crossing even amplitudes

$$\begin{split} X^l(\nu^2,t) \in \left\{ \bar{A}^+, \frac{\bar{A}^-}{\nu}, \frac{\bar{B}^+}{\nu}, \bar{B}^-, \bar{D}^+, \frac{\bar{D}^-}{\nu} \right\} \\ \text{around subthreshold point } \nu = t = 0 \end{split}$$

$$X^{I}(\nu^{2},t) = \sum_{m,n=0}^{\infty} x_{mn}^{I}(\nu^{2})^{m}t^{n}$$

$$d_{mn}^+ = a_{mn}^+ + b_{m-1,n}^+ \implies d_{0n}^+ = a_{0n}^+$$

$$d_{mn}^- = a_{mn}^- + b_{mn}^-$$

• Subthreshold expansion of A^{\pm} and B^{\pm} :

$$A^{+}(\nu,t) = \frac{g^{2}}{m} + d_{00}^{+} + d_{01}^{+}t + \frac{a_{10}^{+}\nu^{2}}{m} + \mathcal{O}(\nu^{4}, \nu^{2}t, t^{2})$$

$$A^{-}(\nu,t) = a_{00}^{-}\nu + a_{01}^{-}\nu t + \mathcal{O}(\nu^{3},\nu t^{2})$$

$$B^{+}(\nu,t) = \frac{g^{2}}{M^{2}} \frac{4m\nu}{M^{2}} + b_{00}^{+}\nu + \mathcal{O}(\nu^{3},\nu t)$$

$$B^{+}(\nu,t) = \frac{g}{M_{\pi}^{2}} \frac{4m\nu}{M_{\pi}^{2}} + b_{00}^{+} \nu + \mathcal{O}(\nu^{3}, \nu t)$$

$$B^{-}(\nu,t) = -\frac{g^{2}}{2m^{2}} - \frac{g^{2}}{M_{-}^{2}} \left[2 + \frac{t}{M_{-}^{2}} \right] + b_{00}^{-} + b_{01}^{-}t + \mathcal{O}(\nu^{2}, \nu^{2}t, t^{2})$$

Roy–Steiner equations for πN scattering: Range of convergence

Assumption: Mandelstam analyticity [Mandelstam (1958,1959)]

$$T(s,t) = \frac{1}{\pi^2} \iint \!\! \mathrm{d}s' \!\! \mathrm{d}u' \frac{\rho_{su}(s',u')}{(s'-s)(u'-u)} + \frac{1}{\pi^2} \iint \!\! \mathrm{d}t' \!\! \mathrm{d}u' \frac{\rho_{tu}(t',u')}{(t'-t)(u'-u)} + \frac{1}{\pi^2} \iint \!\! \mathrm{d}s' \!\! \mathrm{d}t' \frac{\rho_{st}(s',t')}{(s'-s)(t'-t)}$$

with integration ranges defined by the support of the double spectral regions ho

• Boundaries of ρ are given by the lowest graphs

- Convergence of PW exps. of imaginary parts \Rightarrow Lehman ellipses for $z = \cos \theta$ [Lehmann (1958)]
- Convergence of PW projs. of full equations
 ⇒ for given a, hyperbolas must not enter any ρ for all needed values of b
- Constraints on b yield ranges in s & t

t-channel Muskhelishvili-Omnès problem: P-waves (2)

• Estimate systematic uncertainties: Variation of the matching point $t_m \hookrightarrow \text{effect of } f_J^I(t_m) = 0$

- Convergence pattern & internal consistency
- Consistency with KH80
- MO solutions in general consistent with KH80 results