
Baryons in/and Lattice QCD

André Walker-Loud
Lawrence Berkeley

National Laboratory

Chiral Dynamics 2012
Jefferson Laboratory, 
Virginia, USA



OUTLINE

Baryons in lattice QCD

electromagnetic self-energy of Mp - Mn

and isovector nucleon magnetic polarizability

things I wish I had time to discuss

Baryons and lattice QCD

light quark mass dependence of the nucleon (baryons)

nucleon matrix elements gA, GE(Q
2), GM (Q2)



Baryons in lattice QCD things I wish I had time to discuss

electric polarizabilites and magnetic moments of the 
nucleon from lattice QCD

electromagnetic collaboration:
Will Detmold, Brian Tiburzi, AWL

see talk by Brian Tiburzi: “Lattice QCD 
methods for hadronic polarizabilities”
Monday, Hadron Structure and Meson 
Baryon Interactions



Baryons in lattice QCD things I wish I had time to discuss

see talk by Jorge Martin Camalich: 
“Baryon Chiral Perturbation Theory and 
Connection to Lattice QCD”
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Baryons in lattice QCD form factors, gA, �x�u−d

see talk by Dru Renner: 
“Matrix elements from lattice QCD”
Monday, Hadron Structure and Meson Baryon Interactions

Dru gave very nice talk, with cautionary summary I agree 
with 100%

for baryon matrix elements, lattice calculations currently 
lack sufficient study of systematic effects: finite volume, 
excited state contamination, continuum limit, ...

“Apparent conflicts with [experimental] 
measurements not justified”

“Apparent conflicts with         not compelling 
either”

χPT



Baryons in lattice QCD

If we don’t take these cautions seriously, then we are 
forced to ask,

Is there something wrong with QCD?

or

Is there something wrong with our lattice QCD 
calculations?

form factors, gA, �x�u−d

see talk by Dru Renner: 
“Matrix elements from lattice QCD”
Monday, Hadron Structure and Meson Baryon Interactions



Baryons in lattice QCD form factors, gA, �x�u−d
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no discernible pion mass dependence!
must be large cancelations between different orders
convergence is broken

mπ = 300 MeV
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Baryons in lattice QCD form factors, gA, �x�u−d

thanks to 
Dru Renner

apply rule of thumb cut

mπ = 300 MeV

mπL ≥ 4

reasons to believe this may not be sufficient
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Baryons in lattice QCD form factors, gA, �x�u−d

thanks to 
Dru Renner

apply cut

mπ = 300 MeV

reasons to believe this may not be sufficient

mπL ≥ 5



Baryons in lattice QCD form factors, gA, �x�u−d
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rule of thumb which works well for pion/kaon, does not 
work as well baryons



Baryons in lattice QCD form factors, gA, �x�u−d
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quantities which are small mass splittings, or derivatives sigma 
terms from Feynman-Hellmann Theorem will be especially 
sensitive to these volume effects - see talk Jorge Martin Camalich



Baryons in lattice QCD form factors, gA, �x�u−d

(AWL)

High statistics (IV):
Volume Dependence
arXiv:1104.4101

volume correction in SU(2) 
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Baryons in lattice QCD form factors, gA, �x�u−d

thanks to 
Dru Renner

mπ = 300 MeV

similar issue for the elastic form factors, charge radii and 
anomalous magnetic moment



Baryons in lattice QCD form factors, gA, �x�u−d

Lattice QCD Collaborations are actively exploring systematics
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Baryons in lattice QCD form factors, gA, �x�u−d

Lattice QCD Collaborations are actively exploring systematics

Detmold, Lin and Stefan 
Meinel: arXiv:1203.3378

construct matrix elements for many source-sink separations, allowing 
for robust study of excited state contamination
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See talk Wed. by
Stefan Meinel 



Baryons in lattice QCD form factors, gA, �x�u−d

Lattice QCD Collaborations are actively exploring systematics
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Baryons in lattice QCD form factors, gA, �x�u−d

Lattice QCD Collaborations are actively exploring systematics

Just Tuesday - I received new results from the LHP Collaboration

Michael Engelhardt
Jeremy Green
Stefan Krieg
John Negele
Andrew Pochinsky
Sergey Syritsyn

Results computed on BMWc ensemble
isotropic clover Wilson with 2-level 
HEX-smeared gauge links

mπ � 150 MeV

a � 0.116 fm

L � 5.6 fm

mπL � 4.3

Nsrc = 7752



Baryons in lattice QCD form factors, gA, �x�u−d

Lattice QCD Collaborations are actively exploring systematics

LHPC: Michael Engelhardt, Jeremy Green, Stefan Krieg, John Negele, Andrew Pochinsky, Sergey Syritsyn

Kelley parametrization fit to experimental 
data, NOT to the lattice calculations

numerical lattice QCD 
results

�r2E�p−n = you’ll have to read the paper
to be published imminently

mπ � 150 MeV, mπL � 4.3



Baryons in lattice QCD form factors, gA, �x�u−d

Lattice QCD Collaborations are actively exploring systematics

LHPC: Michael Engelhardt, Jeremy Green, Stefan Krieg, John Negele, Andrew Pochinsky, Sergey Syritsyn

Kelley parametrization fit to experimental 
data, NOT to the lattice calculations

numerical lattice QCD 
results

mπ � 150 MeV, mπL � 4.3



Baryons in lattice QCD: Conclusions I
we believe lattice QCD, extrapolated to the continuum and infinite 
volume limits, and to the physical light quark masses, is the QCD of 
nature

while the ground state baryon spectrum has been nicely reproduced by lattice 
QCD calculations, nucleon matrix elements have proven to be significantly more 
challenging, alarming some even in the lattice community about the severity of the 
discrepancy - most notably with the nucleon axial charge, gA

I share Dru Renner’s opinion that after the 2008 lattice conference, too many 
groups fell into the trap of racing to the physical pion mass, without carefully 
checking their systematics.

sizes of physical volumes, pion masses and statistics which work for pion/kaon 
physics, heavy-quark physics, are typically not sufficient for computing properties 
of baryons

the latest LHPC results are the most significant thing to come from lattice QCD 
in this area since the onset of physical pion mass calculations

it remains for us to understand why their method works



Baryons in lattice QCD Light quark mass dependence of MN
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At the 2008 Lattice QCD Conference (Williamsburg), Budapest-
Marseille-Wupertal collaboration (BMWc) surprised the community with 
calculations closer to the physical limit than the rest of us

mπ → ml

mK → ms

mΞ → scale

As Laurent Lellouch mentioned, this heralded the paradigm change in the 
relation between lattice QCD and effective field theory at least for simple 
quantities

BMWc
Science 21 Nov 2008
Vol. 322 no. 5905 pp. 1224



Baryons in lattice QCD Light quark mass dependence of MN

At the 2008 Lattice QCD Conference, 
something else unexpected happened



Baryons in lattice QCD Light quark mass dependence of MN
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Baryons in lattice QCD Light quark mass dependence of MN
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Baryons in lattice QCD Light quark mass dependence of MN
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Baryons in lattice QCD Light quark mass dependence of MN
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I am not advocating this as 
a good model for QCD!

LHP Collaboration arXiv:0806.4549



Baryons in lattice QCD Light quark mass dependence of MN
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Baryons in lattice QCD Light quark mass dependence of MN
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What does this teach us?

For these pion masses, there is a strong cancelation 
between LO, NLO and NNLO           contributions χPT

perhaps should have been expected given poor 
convergence (but just not a straight line!!!)



Baryons in lattice QCD Light quark mass dependence of MN

What if we consider the octet and decuplet in the three 
flavor theory?

MN = M0 + απ
Nm2

π + αK
Nm2

K

− 1

16π2f2

�
3π(D + F )2m3

π +
π

3
(D − 3F )2m3

η

+
2π

3
(5D2 − 6DF + 9F 2)m3

K

+
8

3
F(mπ,∆, µ) +

2

3
F(mK ,∆, µ)

�

Possible convergence is significantly challenged (fails) by 
kaon and eta loops

LHP Collaboration arXiv:0806.4549
PACS-CS Collaboration arXiv:0905.0962



Baryons in lattice QCD Light quark mass dependence of MN

NLO SU(3) chiral fits to spectrum are not consistent 
with phenomenological values of D, F

figures: Jenkins, Manohar, Negele and AWL arXiv:0907.0529

D ∼ 0.75, F ∼ 0.50



Baryons in lattice QCD Light quark mass dependence of MN

What is the status now (2012)?

MN = α0 + α1mπ

= 938± 9 MeV

Physical point NOT included in fit



Baryons in lattice QCD Light quark mass dependence of MN

What is the status now (2012)?

Collaboration uses Overlap Valence fermions on 
Domain-Wall (RBC-UKQCD) sea fermions

χQCD

MN = α0 + α1mπ

= 938± 9 MeV



Baryons in lattice QCD Light quark mass dependence of MN

What is the status now (2012)?

RBC-UKQCD Collaboration uses Domain-Wall valence 
and sea fermions

MN = α0 + α1mπ

= 938± 9 MeV



Baryons in lattice QCD Light quark mass dependence of MN

What is the status now (2012)?

Taking this seriously yields 

MN = α0 + α1mπ

= 938± 9 MeV

σπN = 67± 4 MeV

mπ � 174 MeV

mπ � 758 MeV

I am not advocating this as 
a good model for QCD!



Large Nc and SU(3) Chiral Perturbation Theory

What can we do?

Consider 2-flavor expansion for hyperons

Tiburzi and AWL arXiv:0808.0482

Mai, Bruns, Kubis and Meissner arXiv:0905.2810
Jiang, Tiburzi and AWL arXiv:0911.4721

Jiang and Tiburzi arXiv:0912.2077

Jiang and Tiburzi arXiv:0905.0857

Beane, Bedaque, Parreno and Savage nucl-th/0311027



Large Nc and SU(3) Chiral Perturbation Theory

What can we do?

Consider 2-flavor expansion for hyperons

Tiburzi and AWL arXiv:0808.0482

Mai, Bruns, Kubis and Meissner arXiv:0905.2810
Jiang, Tiburzi and AWL arXiv:0911.4721

Jiang and Tiburzi arXiv:0912.2077

Jiang and Tiburzi arXiv:0905.0857

Beane, Bedaque, Parreno and Savage nucl-th/0311027

Read the literature and apply an old idea to our new 
problem

combine the constraints of large Nc and SU(3) symmetries



Large Nc and SU(3) Chiral Perturbation Theory

Combined large Nc and SU(3) symmetries
‘t Hooft 1974
Witten 1979

Coleman 1979
Dashen, Jenkins, Manohar 1993

...

see talks at this conference by 
Alvaro Calle Cardon: “1/Nc Chiral Perturbation Theory in the one-Baryon 
Sector”
Vojtech Krejcirik: “Model-independent form factor relations at large Nc”

Mathias Lutz: “Strangeness in the baryon ground states”



Large Nc and SU(3) Chiral Perturbation Theory

theory is placed on solid theoretical foundation
lim

Nc→∞
MB = ∞

1/Nccontrolled expansion in         (at least formally) 

M∆ −MN ∝ 1

Nc

inclusion of spin 3/2 dof well defined field theoretically

naturally explains smallness of baryon octet GMO 
relation

Ncm
3/2
s ∝ flavor-1

m3/2
s ∝ flavor-8

m3/2
s /Nc ∝ flavor-27 leading correction to GMO



Large Nc and SU(3) Chiral Perturbation Theory

gives you “smarter” observables to measure/calculate

eg: Spectrum M = M1,0 + M8,0 + M27,0 + M64,0

M1,0 = c1,0
(0)Nc1 + c1,0

(2)

1
Nc

J2

M8,0 = c8,0
(1)T

8 + c8,0
(2)

1
Nc

{J i, Gi8} + c8,0
(3)

1
N2

c

{J2, T 8}

M27,0 = c27,0
(2)

1
Nc

{T 8, T 8} + c27,0
(3)

1
N2

c

{T 8, {J i, Gi8}}

M64,0 = c64,0
(3)

1
N2

c

{T 8, {T 8, T 8}}

J i = q†(J i ⊗ 1)q
T a = q†(1⊗ T a)q

Gia = q†(J i ⊗ T a)q

one-body spin operator
one-body flavor operator
one-body spin-flavor operator



Large Nc and SU(3) Chiral Perturbation Theory
4

TABLE I: Mass combinations M1–M8 from Ref. [15] and MA–MD from Ref. [6]. The coefficients and orders in 1/Nc and
perturbative SU(3) flavor symmetry breaking ε are given for mass combinations M1–M8. Combinations MA–MD are obtained
at order 1/N2

c assuming only isospin flavor-symmetry.

Label Operator Coefficient Mass Combination 1/Nc SU(3)

M1 11 160 Nc c1,0
(0) 25(2N + Λ + 3Σ + 2Ξ) − 4(4∆ + 3Σ∗ + 2Ξ∗ + Ω) Nc 1

M2 J2 −120 1
Nc

c1,0
(2) 5(2N + Λ + 3Σ + 2Ξ) − 4(4∆ + 3Σ∗ + 2Ξ∗ + Ω) 1/Nc 1

M3 T 8 20
√

3 ε c8,0
(1) 5(6N + Λ − 3Σ − 4Ξ) − 2(2∆ − Ξ∗ − Ω) 1 ε

M4 {J i, Gi8} −5
√

3 1
Nc

ε c8,0
(2) N + Λ − 3Σ + Ξ 1/Nc ε

M5 {J2, T 8} 30
√

3 1
N2

c
ε c8,0

(3) (−2N + 3Λ − 9Σ + 8Ξ) + 2(2∆ − Ξ∗ − Ω) 1/N2
c ε

M6 {T 8, T 8} 126 1
Nc

ε2 c27,0
(2) 35(2N − 3Λ − Σ + 2Ξ) − 4(4∆ − 5Σ∗ − 2Ξ∗ + 3Ω) 1/Nc ε2

M7 {T 8, J iGi8} −63 1
N2

c
ε2 c27,0

(3) 7(2N − 3Λ − Σ + 2Ξ) − 2(4∆ − 5Σ∗ − 2Ξ∗ + 3Ω) 1/N2
c ε2

M8 {T 8, {T 8, T 8}} 9
√

3 1
N2

c
ε3 c64,0

(3) ∆ − 3Σ∗ + 3Ξ∗ − Ω 1/N2
c ε3

MA (Σ∗ − Σ) − (Ξ∗ − Ξ) 1/N2
c −

MB
1
3 (Σ + 2Σ∗) − Λ − 2

3 (∆ − N) 1/N2
c −

MC − 1
4 (2N − 3Λ − Σ + 2Ξ) + 1

4 (∆ − Σ∗ − Ξ∗ + Ω) 1/N2
c −

MD − 1
2 (∆ − 3Σ∗ + 3Ξ∗ − Ω) 1/N2

c −

Dividing by
∑

i |ci| instead of by 1
2

∑
i |ci|Mi avoids mix-

ing different flavor representations via the denominator
factor. The rescaled relations R1–R8 and RA–RD have
dimensions of mass.

In our numerical analysis, we shall use the dimension-
less variable

ε =
M2

K − M2
π

Λ2
χ

(7)

as a measure of SU(3) breaking, where Λχ ∼ 4πf =
1 GeV [26] is the scale of chiral symmetry breaking.

III. LATTICE SIMULATION

In this work, we use the results of the recent LHPC
spectrum calculation [27] to explore the mass combina-
tions of the 1/Nc expansion. The LHP Collaboration
utilized a mixed-action lattice calculation with domain-
wall [28–30] valence propagators computed with the Asq-
tad improved [31, 32] dynamical MILC gauge ensem-
bles [33, 34].4 The calculation was performed at one
lattice spacing with a ∼ 0.125 fm, and a fixed spatial
volume L ∼ 2.5 fm. The pion and kaon masses used
in Ref. [27] are {Mπ, MK} = {293, 586}, {356, 604},
{496, 647}, {597, 686}, {689, 729} and {758, 758} MeV,

4 The strange quark and many of the light-quark propagators were
computed by the NPLQCD Collaboration [35].

respectively, on the m007, m010, m020, m030, m040, and
m050 ensembles, where the labels denote the light-quark
masses in lattice units.5 In the dynamical ensembles and
the computation of the valence propagators, the strange
quark was held fixed near its physical value. (In fact the
strange quark was ∼ 25% too large [36].) For further
details of the calculation, we refer the reader to Ref. [27].

Using the bootstrap resampled lattice data, we deter-
mine the 12 mass combinations of Table I on each en-
semble. The results are collected in Table II. These
results were determined with the absolute scale of
a−1 = 1588 MeV on all coarse ensembles, where the
scale used in Ref. [27] was determined from heavy-
quark spectroscopy. We have additionally determined
the mass combinations using the smoothed values of
r1/a, where r1 is determined on each different ensemble
from the heavy-quark potential with r2

1F (r1) = 1 [37].
The values of a−1 determined in this way range from
{1597, 1590, 1614, 1621, 1628, 1634} MeV from the light-
est to heaviest quark mass. These two scale-setting meth-
ods are in good agreement, as shown in the next section.

5 The mass Mη is defined at this order by the Gell-Mann–Okubo
formula M2

η = 4
3M2

K − 1
3M2

π.

R ≡
�

i ciMi�
i |ci|
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B. Heavy Baryon Chiral Lagrangian in the 1/Nc Expansion

The heavy baryon SU(3) chiral Lagrangian at leading order in the momentum expansion and to first order in the
chiral-symmetry breaking quark mass matrix Mq ≡ diag(mu,md,ms) is given by [24, 25],

L =i Tr B̄v (v · D)Bv − i T̄µ
v (v · D)Tv µ − 1

4
∆0 Tr B̄vBv +

5

4
∆0 T̄µ

v Tv µ

+ 2DTr
�
B̄vS

µ
v {Aµ, Bv}

�
+ 2F Tr

�
B̄vS

µ
v [Aµ, Bv]

�

+ C
�
T̄µ
v AµBv + B̄vAµT

µ
v

�
+ 2H T̄µ

v S
ν
vAνTv µ

+ 2σB Tr
�
B̄vBv

�
TrM+ − 2σT T̄µ

v Tv µTrM+

+ 2bDTr
�
B̄v {M+, Bv}

�
+ 2bFTr

�
B̄v [M+, Bv]

�
+ 2bT T̄µ

v M+Tv µ (7)

where the spin- 12 octet baryon fields Bv and spin- 32 decuplet baryon fields Tµ
v are two-component velocity-dependent

baryon fields which are related to the usual four-component relativistic Dirac spin baryon fields B and Tµ by

Bv(x) = eiM0v/ vµx
µ

B(x),

Tµ
v (x) = eiM0v/ vµx

µ

Tµ(x), (8)

where M0 is the flavor-singlet mass of the baryon octet and decuplet baryons in the SU(3) chiral limit mq → 0.
Specifically,

M0 =
5

4
�M8� −

1

4
�M10�, (9)

where �M8� and �M10� are the average flavor-singlet masses of the spin- 12 flavor-octet baryons and the spin- 32 flavor-
decuplet baryons, respectively, in the chiral limit2. M0 also is O(Nc) for baryons with Nc quarks. The leading heavy
baryon chiral Lagrangian also contains the flavor-singlet hyperfine mass splitting

∆0 = �M10� − �M8�, (10)

which is proportional to the total spin-squared J2
v of each baryon multiplet. The mass parameter ∆0 is O(1/Nc) in

the 1/Nc expansion, which is a suppression of 1/N2
c relative to the leading O(Nc) mass M0.

The SU(3) flavor representations of the QCD baryons are the flavor-octet

B =





1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0, − 2√
6
Λ



 , (11)

and the completely symmetric rank-3 flavor-decuplet Tabc, normalized such that Tuuu = ∆++. The heavy baryon
chiral Lagrangian also contains four independent baryon-pion couplings D, F , C and H. The couplings D and F
describe the usual baryon-octet pion couplings; C describes pion couplings between octet and decuplet baryons; and
H describes the pion coupling of the decuplet baryons. The pion octet fields

Π ≡ πaT a =





1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η



 (12)

appear in the heavy baryon chiral Lagrangian in the nonlinear representation ξ2 = Σ = e2iΠ/f , where f ∼ 130 MeV
is the pion decay constant. The vector and axial vector pion combinations

Aµ =
i

2

�
ξ∂µξ

† − ξ†∂µξ
�
,

Vµ =
1

2

�
ξ∂µξ

† + ξ†∂µξ
�
, (13)

2 In the original literature [24–28], �M8� and �M10� are called mB and mT , respectively.
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QCD with Nc = 3 are related to the 1/Nc coefficients by [36, 37]3

D =
1

2
a1,8(1) , F =

1

3
a1,8(1) +

1

6
b1,8(2) ,

C = −a1,8(1) , H = −3

2
a1,8(1) −

3

2
b1,8(2) . (19)

Thus, to first subleading order in the 1/Nc expansion, the pion-baryon couplings satisfy two relations,

C = −2D,

H = 3D − F. (20)

We adopt the following simplified notation for the leading coefficients of the 1/Nc expansion for the rest of this
paper. The coefficients of the spin-1 flavor-octet 1/Nc expansion of the baryon axial vector currents are replaced by

a1,8(1) → a,

b1,8(2) → b, (21)

whereas the coefficients of the spin-0 flavor-octet 1/Nc baryon expansion of the quark mass matrix are replaced by

b0,8(1) → b(1),

b0,8(2) → b(2). (22)

1. Mass Relations R1 – R4

In Ref. [39], it was argued a better approach to exploring the baryon spectrum was to utilize our knowledge of
both large Nc as well as SU(3) symmetry which is known to work well for the experimental spectrum [40]; instead
of considering the individual baryon masses directly, one should explore the light quark mass dependence of various
linear combinations of the baryon masses, chosen to have definite scaling in terms of 1/Nc and SU(3) chiral symmetry
breaking quark mass difference (ms −ml). The various linear combinations were determined in Ref. [40]. In Ref. [39],
it was demonstrated that the predicted scaling with both 1/Nc and (ms −ml) was clearly visible in the lattice data.
The first few mass combinations had statistically meaningful values over the range of quark masses, but there were
not enough statistics to resolve all of them. In this work, we focus our attention on three of these mass relations,
R1, R3 and R4. These mass relations are given by

Ri =

�
j cijMj�
j |cij |

(23)

where

M1 =
�

j

c1jMj = 25(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M2 =
�

j

c2jMj = 5(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M3 =
�

j

c3jMj = 5(6MN +MΛ − 3MΣ − 4MΞ)− 2(2M∆ −MΞ∗ −MΩ) ,

M4 =
�

j

c4jMj = MN +MΛ − 3MΣ +MΞ . (24)

3 The 1/Nc operator analysis has recently been extended to the two-body axial current operators [38], such as Tr
�
B̄A · AB

�
.

5

appear in the baryon-pion couplings and through the baryon covariant derivative Dµ = ∂µ+ iVµ. In the heavy baryon

chiral Lagrangian, S
µ
v is the spin operator which acts on the spinor portion of the baryon field. Heavy baryon velocity

which follows from the identity B̄vγµγ5Bv = 2B̄vS
µ
vBv.

Additional dependence on the pion field enters through the quark mass matrix spurion

M+ =
1

2

�
ξMq

†ξ + ξ†Mqξ
†
�
. (14)

In this work, the lattice computations are performed with degenerate u and d quark masses mu = md = ml, so the

quark mass matrix reduces to

Mq =
1

3
(2ml +ms) 11 +

2√
3
(ml −ms)T

8
. (15)

There are two flavor-singlet contributions to the baryon masses with one insertion of the quark mass matrix coming

from the terms proportional to σB and σT . These terms yield contributions of 2σBm̄ or 2σT m̄, where m̄ = (2ml+ms)/3

is the average quark mass. There are also three flavor-octet contributions to the baryon masses with a single insertion

of the quark mass matrix. In the exact isospin limit in which we are working, these terms yield SU(3) flavor-breaking

mass splittings of the baryons proportional to bD, bF and bT (called bC previously [? ]) times the quark mass difference
(ms −ml).

The 1/Nc expansion [? ] for baryons [? ] leads to the emergence of a spin-flavor symmetry [? ? ? ? ? ]

for large-Nc baryons. In Ref. [? ], the heavy baryon Lagrangian was formulated in the 1/Nc expansion. Relations

amongst the coefficients in the heavy baryon chiral Lagrangian occur at leading and subleading orders in the 1/Nc

expansion, which reduces the number of independent chiral coefficients in the heavy baryon chiral Lagrangian at

leading and subleading orders in 1/Nc. In addition, there exists a planar flavor symmetry [? ] at leading order in

1/Nc, which relates flavor-singlet to flavor-octet parameters at this order, further reducing the number of independent

chiral coefficients in the heavy baryon chiral Lagrangian at leading order in the 1/Nc expansion. In particular, planar

QCD flavor symmetry relate the flavor-singlet quark mass parameters σB and σT to the flavor-octet quark mass

parameters bD, bF and bT at leading orders in 1/Nc. The flavor-octet and flavor-singlet quark mass parameters are

given in terms of the coefficients b
0,8
(n) of the spin-0 flavor-octet 1/Nc expansion, where the subscript n refers to the

fact that the corresponding operator O(n) is an n-body quark operator which is accompanied by an explicit factor

of N
1−n
c . The matrix elements �O(n)� also have nontrivial dependence on Nc. To first subleading order in the 1/Nc

expansion, the mass matrix parameters of the heavy baryon chiral Lagrangian for QCD with Nc = 3 are given by

bD =
1

4
b(2) , bF =

1

2
b(1) +

1

6
b(2) , bT = −3

2
b(1) −

5

4
b(2) ,

σB =
1

2
b(1) +

1

12
b(2) , σT =

1

2
b(1) +

5

12
b(2) . (16)

To first subleading order in 1/Nc, the five quark mass parameters of the heavy baryon chiral Lagrangian are given in

terms of two 1/Nc coefficients, and satisfy the three relations

bD + bF = −1

3
bT = σT ,

σB = −1

3
bD + bF , (17)

or

5

4
σB − 1

4
σT = bF − 2

3
bD =

1

2
b
0,8
(1),

σT − σB =
4

3
bD =

1

3
b
0,8
(2). (18)

The axial couplings D, F , C and H also have an expansion in terms of spin-1 flavor-octet coefficients c
1,8
(n) of the 1/Nc

expansion. To first subleading order in 1/Nc, the pion-baryon couplings of the heavy baryon chiral Lagrangian for

6

QCD with Nc = 3 are related to the 1/Nc coefficients by [? ? ]3

D =
1

2
a(1) , F =

1

3
a(1) +

1

6
a(2) ,

C = −a(1) , H = −3

2
a(1) −

3

2
a(2) . (19)

Thus, to first subleading order in the 1/Nc expansion, the pion-baryon couplings satisfy two relations,

C = −2D,

H = 3D − F. (20)

We adopt the following simplified notation for the leading coefficients of the 1/Nc expansion for the rest of this
paper. The coefficients of the spin-1 flavor-octet 1/Nc expansion of the baryon axial vector currents are replaced by

a1,8(1) → a(1),

b1,8(2) → a(2), (21)

whereas the coefficients of the spin-0 flavor-octet 1/Nc baryon expansion of the quark mass matrix are replaced by

b0,8(1) → b(1),

b0,8(2) → b(2). (22)

1. Mass Relations R1 – R4

In Ref. [? ], it was argued a better approach to exploring the baryon spectrum was to utilize our knowledge of
both large Nc as well as SU(3) symmetry which is known to work well for the experimental spectrum [? ]; instead
of considering the individual baryon masses directly, one should explore the light quark mass dependence of various
linear combinations of the baryon masses, chosen to have definite scaling in terms of 1/Nc and SU(3) chiral symmetry
breaking quark mass difference (ms −ml). The various linear combinations were determined in Ref. [? ]. In Ref. [? ],
it was demonstrated that the predicted scaling with both 1/Nc and (ms −ml) was clearly visible in the lattice data.
The first few mass combinations had statistically meaningful values over the range of quark masses, but there were
not enough statistics to resolve all of them. In this work, we focus our attention on three of these mass relations,
R1, R3 and R4. These mass relations are given by

Ri =

�
j cijMj�
j |cij |

(23)

where

M1 =
�

j

c1jMj = 25(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M2 =
�

j

c2jMj = 5(2MN +MΛ + 3MΣ + 2MΞ)− 4(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) ,

M3 =
�

j

c3jMj = 5(6MN +MΛ − 3MΣ − 4MΞ)− 2(2M∆ −MΞ∗ −MΩ) ,

M4 =
�

j

c4jMj = MN +MΛ − 3MΣ +MΞ . (24)

3 The 1/Nc operator analysis has recently been extended to the two-body axial current operators [? ], such as Tr
�
B̄A · AB

�
.
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Thus,

R1 =
1

240
M1 =

2

3

�
5

4
�M8� −

1

4
�M10�

�
,

R2 =
1

80
M2 = −1

2
(�M8� − �M10�) ,

R3 =
1

78
M3,

R4 =
1

6
M4, (25)

where the average octet and decuplet masses are given by

�M8� =
1

8
(2MN +MΛ + 3MΣ + 2MΞ) = M0 +

1

4
∆0,

�M10� =
1

10
(4M∆ + 3MΣ∗ + 2MΞ∗ +MΩ) = M0 +

5

4
∆0 (26)

in the chiral limit mq → 0. These relations are designed to isolate various operators in the combined 1/Nc and
SU(3)-breaking expansions. For example, to O(mq), the light quark mass dependencies of these combinations are
given by

R1 (ml,ms) =
2

3

�
M0 −

�
3

4
b(1) +

5

24
b(2)

�
(2ml +ms)

�
,

R2 (ml,ms) = −1

2

�
∆0 −

�
b(1) +

7

6
b(2)

�
(2ml +ms)

�
,

R3 (ml,ms) =
20

39
b(1) (ms −ml) ,

R4 (ml,ms) = − 5

18
b(2) (ms −ml) , (27)

The relations R5–R8 vanish to this order in the chiral expansion. For this reason, they are particularly interesting

to use with light quark mass extrapolations, as the leading contribution begins with the chiral loops at O(m3/2
q ).

However, even more precise results of the baryon spectrum are needed than in Ref. [? ] for these relations.
Using the large Nc expansions through second non-trivial order, and working through NLO in the chiral expansion,

the relations R1 and R2 are given by

3

2
R1(ml,ms) = M0 −

�
3

4
b(1) +

5

24
b(2)

�
(2ml +ms)

− 1

12

�
35a2(1) − 5a2(2)

��
3F(mπ, 0, µ) + 4F(mK , 0, µ) + F(mη, 0, µ)

8(4πf)2

�

− 1

12
a2(1)

�
50

�
3F(mπ,∆, µ) + 4F(mK ,∆, µ) + F(mη,∆, µ)

8(4πf)2

�

− 4

�
3F(mπ,−∆, µ) + 4F(mK ,−∆, µ) + F(mη,−∆, µ)

8(4πf)2

��
(28)

−2 R2(ml,ms) = ∆0 −
�
b(1) +

7

6
b(2)

�
(2ml +ms)

− 1

3

�
a2(1) + 16a(1)a(2) + 9a2(2)

��
3F(mπ, 0, µ) + 4F(mK , 0, µ) + F(mη, 0, µ)

8(4πf)2

�

− 1

3
a2(1)

�
− 10

�
3F(mπ,∆, µ) + 4F(mK ,∆, µ) + F(mη,∆, µ)

8(4πf)2

�

+ 4

�
3F(mπ,−∆, µ) + 4F(mK ,−∆, µ) + F(mη,−∆, µ)

8(4πf)2

��
(29)

a(1) = 0.2(5) D = 0.10(25)
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which has the limits and properties

F(0,∆, µ) = 0

F(m, 0, µ) = πm3

F(m,−∆, µ) =

�
−F(m,∆, µ) + 2iπ(∆2 −m2)3/2, m < |∆|
−F(m,∆, µ) + 2π(m2 −∆2)3/2, m > |∆| . (16)

For the baryon spectrum, the leading non-analytic light quark mass dependence is encoded
in this function. As such, it is of particular interest to find evidence of this behavior in the
spectrum.

The mass relations R3 and R4 vanish in both the SU(3) chiral and vector limits, making
them more sensitive to the NLO non-analytic light quark mass dependence. At NLO in the
chiral expansion, and to the first two non-trivial orders in the large Nc expansion, these
relations are given by

R3(ml,ms) =
20

39
b1 (ms −ml)−

20a2
1
− 5a2

2

117

3F0

π − 2F0

K − F0

η

(4πf)2

− a2
1

117

�
35

3F∆
π − 2F∆

K − F∆
η

(4πf)2
−

3F−∆
π − 2F−∆

K − F−∆
η

(4πf)2

�
, (17)

R4(ml,ms) =− 5

18
b2 (ms −ml)

+
a2
1
+ 4a1a2 + a2

2

36

3F0

π − 2F0

K − F0

η

(4πf)2
− 2a2

1

9

3F∆
π − 2F∆

K − F∆
η

(4πf)2
. (18)

In addition to these three mass relations, the Gell-Mann–Okubo relation is also important
to examine

∆GMO =
3

4
MΛ +

1

4
MΣ − 1

2
MN − 1

2
MΞ . (19)

Since the quark mass operator contains pieces which transform as both an 8 as well as a 1
under SU(3) transformations, Eq. (9), there are non-vanishing contributions to the GMO
relation. However, mass operators which transform as an 8 make vanishing contributions
to Eq. (19). The leading mass operator which makes a non-zero contribution to the GMO
relation transforms as a flavor-27. These corrections can arise either from chiral loops
or from a mass operator containing two or more quark mass insertions. This makes the
GMO relation particularly interesting to explore with lattice QCD calculations; the leading
contribution to this mass relation comes from chiral loop effects which are non-analytic in
the light quark masses. Experimentally, the GMO relation is found to be

∆phy
GMO

= 6.45 MeV . (20)

Each baryon mass in the relation receives non-analytic mass corrections which scale as
δMB ∝ Ncm

3/2
s . These large corrections may lead to the expectation that the GMO rela-

tion receives large contributions from the loop corrections. However, one can show these
Ncm

3/2
s terms are proportional to 1 under SU(3) transformations. Additionally, the m3/2

s

contributions transform as an 8 while the m3/2
s /Nc corrections transform as a flavor-27. This

8

R3 ∝ ms −ml R4 ∝ (ms −ml)/Nc
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FIG. 2: Representative fits to R1 from LO (left) and NLO (right) HBχPT analysis. The blue star
is the physical value, not used in the analysis. The upper error band results from a fit to the lightest
four numerical data and the lower bad is the result extrapolated to the physical value of the strange
quark mass mlatt

s → mlatt
s,phy, Eq. (27).

However, this is not surprising given the small value of a1 determined in the NLO analysis.
This small value is consistent with no contributions from the NLO terms and inconsistent
with the known phenomenological determination of the axial coupling. This is not surprising
given the convergence issues observed in the SU(2) extrapolation of the nucleon mass [12, 16].
One is left to conclude that the SU(3) heavy baryon χPT does not provide a controlled,
convergent expansion for the mass combination R1 for the range of quark masses used in
this work and a value of a1 consistent with phenomenology or direct lattice calculations of
the baryon axial charges.

2. Mass relations R3 and R4

The relations R3 and R4 both receive leading contributions from flavor-octet mass op-
erators, vanishing in both the SU(3) vector as well as SU(3) chiral limits. From these
symmetries, the relations R3 and R4 are more sensitive to the non-analytic light quark mass
dependence occurring at NLO in the chiral expansion. As with the analysis of R1, three
choices of the parameter f are taken to estimate higher order effects, Eq. (28). The LO
expressions for R3 and R4, Eqs. (17) and (18) with ai = 0, do not describe the numerical
results well; it is clear higher order contributions are necessary for extrapolations of this
data. At NLO, the analysis of R3 and R4 becomes correlated. The full covariance matrix is
constructed as described in Ref. [37]. The numerical results of Ref. [12] are insufficient to
constrain both the leading and subleading axial coefficients, and so the analysis is restricted
to the set of LECs

λ = (b1, b2, a1) , (33)

with a2 = 0. From the NLO analysis, the LECs are determined to be

b1[NLO] = −6.6(5) , b2[NLO] = 4.3(4) , a1[NLO] = 1.4(1) . (34)
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FIG. 3: The LO and NLO contributions to R3 (left) and R4 (right). A (blue) star is used to denote

the physical values, not included in the analysis. The particular fit displayed is a combined analysis

of R3 and R4 to the data at the lightest three values of mlatt
l .

Using the leading large Nc relations with a2 = 0 in Eq. (11), this corresponds to

D = 0.70(5) , F = 0.47(3) , C = −1.4(1) , H = −2.1(2) . (35)

The significance of this is prominent; the large value of the axial coupling is strong evidence
for the presence of the non-analytic light quark mass dependence in these mass relations.
Further, this is the first time an analysis of the baryon spectrum has returned values of the
axial couplings consistent with phenomenology.7

However, caution is in order. Examining the resulting contributions to R3 and R4 from LO
and NLO separately, one observes a delicate cancellation between the different contributions,
see Fig. 3. Further studies are needed with more numerical data sufficient to also constrain
the parameter a2 as well as the NNLO contributions.

C. Gell-Mann–Okubo Relation

The leading contribution to the Gell-Mann–Okubo relation is from a flavor-27, which
in HBχPT come from the leading non-analytic light quark mass dependence, Eq. (21).
For this reason, it is a particularly interesting mass relation to study, as has been done if
Refs. [12, 62]. In this work, the analysis is taken further. First, it is demonstrated that
the numerical results are inconsistent with a taylor expansion about the SU(3) vector limit.
Second, an NNLO analysis is performed for the first time and it is demonstrated at this

7
Finding values of the axial couplings consistent with phenomenology has not just been a challenge for

lattice QCD, but also observed in large Nc χPT analysis of the experimentally measured baryon magnetic

moments [97, 98]. It is also interesting to note that while the SU(3) chiral expansion for the baryon

spectrum is not convergent, it was found that the volume dependence of the octet baryon masses is

consistent with SU(3) HBχPT. Analysis of the volume dependence yielded a large value of gπN∆ (C)

with gA fixed to its physical value [99].
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First time axial couplings left as free parameters and:
values consistent with phenomenological determinations
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However, this is not surprising given the small value of a1 determined in the NLO analysis.
This small value is consistent with no contributions from the NLO terms and inconsistent
with the known phenomenological determination of the axial coupling. This is not surprising
given the convergence issues observed in the SU(2) extrapolation of the nucleon mass [12, 16].
One is left to conclude that the SU(3) heavy baryon χPT does not provide a controlled,
convergent expansion for the mass combination R1 for the range of quark masses used in
this work and a value of a1 consistent with phenomenology or direct lattice calculations of
the baryon axial charges.

2. Mass relations R3 and R4

The relations R3 and R4 both receive leading contributions from flavor-octet mass op-
erators, vanishing in both the SU(3) vector as well as SU(3) chiral limits. From these
symmetries, the relations R3 and R4 are more sensitive to the non-analytic light quark mass
dependence occurring at NLO in the chiral expansion. As with the analysis of R1, three
choices of the parameter f are taken to estimate higher order effects, Eq. (28). The LO
expressions for R3 and R4, Eqs. (17) and (18) with ai = 0, do not describe the numerical
results well; it is clear higher order contributions are necessary for extrapolations of this
data. At NLO, the analysis of R3 and R4 becomes correlated. The full covariance matrix is
constructed as described in Ref. [37]. The numerical results of Ref. [12] are insufficient to
constrain both the leading and subleading axial coefficients, and so the analysis is restricted
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Using the leading large Nc relations with a2 = 0 in Eq. (11), this corresponds to

D = 0.70(5) , F = 0.47(3) , C = −1.4(1) , H = −2.1(2) . (35)

The significance of this is prominent; the large value of the axial coupling is strong evidence
for the presence of the non-analytic light quark mass dependence in these mass relations.
Further, this is the first time an analysis of the baryon spectrum has returned values of the
axial couplings consistent with phenomenology.7

However, caution is in order. Examining the resulting contributions to R3 and R4 from LO
and NLO separately, one observes a delicate cancellation between the different contributions,
see Fig. 3. Further studies are needed with more numerical data sufficient to also constrain
the parameter a2 as well as the NNLO contributions.

C. Gell-Mann–Okubo Relation

The leading contribution to the Gell-Mann–Okubo relation is from a flavor-27, which
in HBχPT come from the leading non-analytic light quark mass dependence, Eq. (21).
For this reason, it is a particularly interesting mass relation to study, as has been done if
Refs. [12, 62]. In this work, the analysis is taken further. First, it is demonstrated that
the numerical results are inconsistent with a taylor expansion about the SU(3) vector limit.
Second, an NNLO analysis is performed for the first time and it is demonstrated at this
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Finding values of the axial couplings consistent with phenomenology has not just been a challenge for

lattice QCD, but also observed in large Nc χPT analysis of the experimentally measured baryon magnetic

moments [97, 98]. It is also interesting to note that while the SU(3) chiral expansion for the baryon
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but still observe large cancellations between LO and NLO
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Also - I would like to draw attention to the work of Mathias Lutz and 
Alexandre Semke who fit the masses (not mass splittings) of 4 
different lattice QCD groups, and obtained similar axial couplings

Fit i:
each fit is to set of 
BMW, LHPC, PACS-CS
none of the fits include 
QCDSF-UKQCD, who 
computed masses in SU(3) 
limit as well as SU(3)-broken
(with similar agreement)

I do not understand - but 
this agreement is remarkable
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Only NNLO SU(3) naturally supports strong light quark mass dependence
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Combined with R3 and R4 - provides first compelling evidence of non-analytic 
light quark mass dependence in the baryon spectrum



Large Nc and SU(3) Chiral Perturbation Theory

Tom Degrand: arXiv:1205.0235
heroically performing quenched 
QCD calculations for 
Nc = 3, 5, 7

M(Nc, J) = NcA+
J(J + 1)

Nc
B

(c) : M(Nc, J = Nc/2)−M(Nc, J = Nc/2− 1)

(b) : A (constituent quark mass)



Baryons in lattice QCD: Conclusions II
the more I study baryons, the more confused I get

there now seems to be un-ignorable evidence for entirely 
unexpected light quark mass dependence in the nucleon 
(baryon) spectrum, basically down to the physical pion mass

MN = α0 + α1mπ

combining large Nc with SU(2) and SU(3) flavor symmetry is 
showing promise - at least qualitatively

what is clearly (still) needed is high statistics study of baryons 
with (with the aim of understanding chiral perturbation theory)

120 ≤ mπ ≤ 400 MeV



Baryons and lattice QCD

electromagnetic self-energy of Mp - Mn: Cottingham Formula

self-energy related to forward Compton scattering

in principle, allows for robust, model independent 
determination of self-energy through dispersion theory

two challenges in realizing this method

requires subtracted dispersion integral
requires renormalization

unknown subtraction function

AWL, Carl Carlson, Jerry Miller: PRL 108 (2012)

Harari PRL 17(1966)
Abarbanel and Nussinov Phys.Rev. 158 (1967)

Collins Nucl.Phys. B149 (1979)



Xn

Xp
= e−(mn−mp)/kT

mn −mp = δMγ
n−p + δMmd−mu

n−p

primordial ratio

mn −mp = 1.29333217(42) MeV

Baryons and lattice QCD

composition of early universe, exponentially sensitive to 
isovector nucleon mass:

this separation only 
at LO in isospin breaking

�N |(md −mu)q̄q|N� needed to renormalize EM self-energy

� �� �



Baryons and lattice QCD

my original interest was to use lattice QCD calculations of 

mn −mp = α(md −mu) + . . .

as an independent method to determine 
However, this requires subtracting from experimental value the 
electromagnetic self-energy contribution

md −mu

δMγ
p−n = 0.76(30) MeV, Gasser and Leutwyler

Nucl. Phys. B94 (1975)
Phys. Rept. 87 (1982)

the uncertainty in this determination of the electromagnetic self-
energy dominates the determination of md −mu

so lets try and improve this with modern knowledge of nucleon 
Compton scattering 



Cottingham’s Formula AWL, C.Carlson, G.Miller: PRL 108 (2012)

The Electromagnetic Self-Energy Contribution to Mp −Mn

and the Isovector Nucleon Magnetic Polarizability

André Walker-Loud,1, 2 Carl E. Carlson,3 and Gerald A. Miller1, 4

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Physics, University of California, Berkeley, CA 94720, USA

3Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795.
4Department of Physics, University of Washington, Seattle, WA 98195-1560.

(Dated: June 1, 2012 9:37)

We update the determination of the isovector nucleon electromagnetic self-energy, valid to leading
order in QED. A technical oversight in the literature concerning the elastic contribution to Cotting-
ham’s formula is corrected and modern knowledge of the structure functions is used to precisely
determine the inelastic contribution. We find δMγ

p−n = 1.30(03)(47) MeV. The largest uncertainty
arises from a subtraction term required in the dispersive analysis, which can be related to the isovec-
tor magnetic polarizability. With plausible model assumptions, we can combine our calculation with
additional input from lattice QCD to constrain this polarizability as: βp−n = −0.87(85)× 10−4fm3.

PACS numbers: 13.40.Dk, 13.40.Ks, 13.60.Fz, 14.20.Dh

Given only electrostatic forces, one would predict that
the proton is more massive than the neutron but the
opposite actually occurs [1–3]:

Mn −Mp = 1.29333217(42) MeV . (1)

Before we knew of quarks and gluons there were many
attempts to explain this contradiction, see Ref. [4] for a
review. We now know there are two sources of isospin
breaking in the standard model, the masses of the up
and down quarks as well as the electromagnetic interac-
tions between quarks governed by the charge operator.
The effects of the mass difference between down and up
quarks are larger and of the opposite sign than those of
electromagnetic effects, see the reviews [5–7]. The net
result of the quark mass difference and electromagnetic
effects is well known, Eq. (1), but our ability to disen-
tangle the contributions from these two sources remains
poorly constrained.

In contrast, lattice QCD calculations have matured sig-
nificantly. There are now calculations performed with the
light quark masses at or near their physical values [8–12],
reproducing the ground state hadron spectrum within
a few percent. These advances have allowed for calcu-
lations to begin including explicit isospin breaking ef-
fects from both the quark masses [13–17] and electro-
magnetism [15, 18–21]. While the lattice calculations
of md − mu effects are robust, the contributions from
electromagnetism are less mature and suffer from larger
systematics, due in large part to the disparity between
the photon mass and a typical hadronic scale. Improved
knowledge of md−mu and its effects in nucleons will en-
hance the ability to use effective field theory to compute
a variety of isospin-violating (charge asymmetric) effects
in nuclear reactions [7, 22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the nu-
cleon to measured elastic and inelastic cross sections,
gives the result δMγ

p−n = 0.76 ± 0.30 MeV. Given the

high present interest in the precise value of δMγ
p−n and

its many possible implications, it is worthwhile to revisit
this result. Many high quality electron scattering exper-
iments have been performed since 1975 and there have
also been theoretical advances. The central aim of this
work is to provide a modern, robust evaluation of δMγ

p−n.
We will show the precision of this effort is severely lim-
ited by our knowledge of the required subtraction func-
tion. Given plausible model assumptions, this limitation
is translated into our knowledge of the isovector nucleon
magnetic polarizability, βp−n = βp

M −βn
M , for which even

the sign is presently unknown [30].
Cottingham’s sum rule– In perturbation theory, the

electromagnetic self-energy of the nucleon, δMγ , can be
related to the spin averaged forward Compton scattering
tensor

Tµν =
i

2

�

σ

�
d4ξ eiq·ξ�pσ|T {Jµ(ξ)Jν(0)} |pσ� , (2)

integrated with the photon propagator over space-time

δMγ =
i

2M

α

(2π)3

�

R
d4q

Tµ
µ (p, q)

q2 + i�
, (3)

where we work in the nucleon rest frame pµ = (M,0),
α = e2/4π and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the
integration contour to imaginary photon energy, the nu-
cleon self-energy can be related to the structure functions
arising from the scattering of space-like photons through
dispersion theory, giving rise to what is known as Cot-
tingham’s formula (the Cottingham sum rule) [29, 31]. In
principle, this allows the integral in Eq. (3) to be com-
puted in a model independent fashion with input from ex-
perimental data. There are a few issues which complicate
the realization of this method: a subtracted dispersive
analysis is required introducing an unknown subtraction
function [32, 33]; the integral in Eq. (3) diverges loga-
rithmically in the ultra-violet region and requires renor-
malization [34]. We review these issues briefly.
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effects is well known, Eq. (1), but our ability to disen-
tangle the contributions from these two sources remains
poorly constrained.

In contrast, lattice QCD calculations have matured sig-
nificantly. There are now calculations performed with the
light quark masses at or near their physical values [8–12],
reproducing the ground state hadron spectrum within
a few percent. These advances have allowed for calcu-
lations to begin including explicit isospin breaking ef-
fects from both the quark masses [13–17] and electro-
magnetism [15, 18–21]. While the lattice calculations
of md − mu effects are robust, the contributions from
electromagnetism are less mature and suffer from larger
systematics, due in large part to the disparity between
the photon mass and a typical hadronic scale. Improved
knowledge of md−mu and its effects in nucleons will en-
hance the ability to use effective field theory to compute
a variety of isospin-violating (charge asymmetric) effects
in nuclear reactions [7, 22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the nu-
cleon to measured elastic and inelastic cross sections,
gives the result δMγ

p−n = 0.76 ± 0.30 MeV. Given the

high present interest in the precise value of δMγ
p−n and

its many possible implications, it is worthwhile to revisit
this result. Many high quality electron scattering exper-
iments have been performed since 1975 and there have
also been theoretical advances. The central aim of this
work is to provide a modern, robust evaluation of δMγ

p−n.
We will show the precision of this effort is severely lim-
ited by our knowledge of the required subtraction func-
tion. Given plausible model assumptions, this limitation
is translated into our knowledge of the isovector nucleon
magnetic polarizability, βp−n = βp

M −βn
M , for which even

the sign is presently unknown [30].
Cottingham’s sum rule– In perturbation theory, the

electromagnetic self-energy of the nucleon, δMγ , can be
related to the spin averaged forward Compton scattering
tensor

Tµν =
i

2

�

σ

�
d4ξ eiq·ξ�pσ|T {Jµ(ξ)Jν(0)} |pσ� , (2)

integrated with the photon propagator over space-time

δMγ =
i

2M

α

(2π)3

�

R
d4q

Tµ
µ (p, q)

q2 + i�
, (3)

where we work in the nucleon rest frame pµ = (M,0),
α = e2/4π and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the
integration contour to imaginary photon energy, the nu-
cleon self-energy can be related to the structure functions
arising from the scattering of space-like photons through
dispersion theory, giving rise to what is known as Cot-
tingham’s formula (the Cottingham sum rule) [29, 31]. In
principle, this allows the integral in Eq. (3) to be com-
puted in a model independent fashion with input from ex-
perimental data. There are a few issues which complicate
the realization of this method: a subtracted dispersive
analysis is required introducing an unknown subtraction
function [32, 33]; the integral in Eq. (3) diverges loga-
rithmically in the ultra-violet region and requires renor-
malization [34]. We review these issues briefly.
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Lorentz invariance significantly constrains the form of

Tµν , for which there are two common parameterizations,
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Performing the Wick rotation ν → iν and the variable
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ton tensor is
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The scalar functions (Ti, ti) can be evaluated using a dis-

persive analysis. It is known the (T1, t1) functions re-

quire a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted disper-

sion relation [32]. In Ref. [28], it was claimed the elastic

contributions to t1 could be evaluated with an unsub-

tracted dispersive analysis. However, performing an un-

subtracted dispersive analysis of the elastic contributions

to Eqs. (7) by inserting a complete set of elastic states

into Eq. (2), leads to inconsistent results:
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with τel ≡ Q2

4M2 . If both parameterizations of the elastic

contribution were to satisfy unsubtracted dispersion rela-

tions, the following positive-definite integral would have

to vanish
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in

terms of ti and vice versa, and to demonstrate that if the

elastic contributions to T1(t1) do not satisfy an unsub-

tracted dispersive analysis, then neither will the elastic

contributions to t1(T1). Eq. (8b) was used in Ref. [28]

and is often quoted as the elastic contribution to the nu-

cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a

subtracted dispersive analysis of (T1, t1), and an unsub-

tracted analysis of (T2, t2), using a mass-independent

renormalization scheme (dimensional regularization) one

arrives at [34]
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where τ = ν2/Q2
, Fi(ν, Q2

) are the standard nucleon

structure functions and νth = mπ + (m2
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use dispersion integrals to evaluate scalar functions
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Ti(ν, Q
2) = Ti(−ν, Q2)

Crossing Symmetric
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if contour at infinity does not vanish

subtracted dispersion integral

g(ν) =
Ti(ν, Q2)

ν2

introduces new pole at 
which you need to subtract

ν = 0
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ν
It is known that 

satisfies unsubtracted dispersion 
integral while

requires a subtraction
Regge behavior

T1(ν, Q
2) [t1(ν, Q

2)]

T2(ν, Q
2) [t2(ν, Q

2)]

H. Harari: PRL 17 (1966)

H.D. Abarbanel S. Nussinov: Phys.Rev. 158 (1967)

Imt1[T1]
���
p−n

∝ ν1/2
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

at the time, introducing an unknown subtraction function 
would be disastrous for getting a precise value:

they provided an argument based upon various assumptions to 
avoid the subtracted dispersive integral

δMγ
p−n = 0.76(30) MeV

central value: from elastic contribution
uncertainty: estimates of inelastic structure contributions

however, one can show their arguments are incorrect: 
one must face the subtraction function
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We update the determination of the isovector nucleon electromagnetic self-energy, valid to leading
order in QED. A technical oversight in the literature concerning the elastic contribution to Cotting-
ham’s formula is corrected and modern knowledge of the structure functions is used to precisely
determine the inelastic contribution. We find δMγ

p−n = 1.30(03)(47) MeV. The largest uncertainty
arises from a subtraction term required in the dispersive analysis, which can be related to the isovec-
tor magnetic polarizability. With plausible model assumptions, we can combine our calculation with
additional input from lattice QCD to constrain this polarizability as: βp−n = −0.87(85)× 10−4fm3.

PACS numbers: 13.40.Dk, 13.40.Ks, 13.60.Fz, 14.20.Dh

Given only electrostatic forces, one would predict that
the proton is more massive than the neutron but the
opposite actually occurs [1–3]:

Mn −Mp = 1.29333217(42) MeV . (1)

Before we knew of quarks and gluons there were many
attempts to explain this contradiction, see Ref. [4] for a
review. We now know there are two sources of isospin
breaking in the standard model, the masses of the up
and down quarks as well as the electromagnetic interac-
tions between quarks governed by the charge operator.
The effects of the mass difference between down and up
quarks are larger and of the opposite sign than those of
electromagnetic effects, see the reviews [5–7]. The net
result of the quark mass difference and electromagnetic
effects is well known, Eq. (1), but our ability to disen-
tangle the contributions from these two sources remains
poorly constrained.

In contrast, lattice QCD calculations have matured sig-
nificantly. There are now calculations performed with the
light quark masses at or near their physical values [8–12],
reproducing the ground state hadron spectrum within
a few percent. These advances have allowed for calcu-
lations to begin including explicit isospin breaking ef-
fects from both the quark masses [13–17] and electro-
magnetism [15, 18–21]. While the lattice calculations
of md − mu effects are robust, the contributions from
electromagnetism are less mature and suffer from larger
systematics, due in large part to the disparity between
the photon mass and a typical hadronic scale. Improved
knowledge of md−mu and its effects in nucleons will en-
hance the ability to use effective field theory to compute
a variety of isospin-violating (charge asymmetric) effects
in nuclear reactions [7, 22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the nu-
cleon to measured elastic and inelastic cross sections,
gives the result δMγ

p−n = 0.76 ± 0.30 MeV. Given the

high present interest in the precise value of δMγ
p−n and

its many possible implications, it is worthwhile to revisit
this result. Many high quality electron scattering exper-
iments have been performed since 1975 and there have
also been theoretical advances. The central aim of this
work is to provide a modern, robust evaluation of δMγ

p−n.
We will show the precision of this effort is severely lim-
ited by our knowledge of the required subtraction func-
tion. Given plausible model assumptions, this limitation
is translated into our knowledge of the isovector nucleon
magnetic polarizability, βp−n = βp

M −βn
M , for which even

the sign is presently unknown [30].
Cottingham’s sum rule– In perturbation theory, the

electromagnetic self-energy of the nucleon, δMγ , can be
related to the spin averaged forward Compton scattering
tensor

Tµν =
i

2

�

σ

�
d4ξ eiq·ξ�pσ|T {Jµ(ξ)Jν(0)} |pσ� , (2)

integrated with the photon propagator over space-time

δMγ =
i

2M

α

(2π)3

�

R
d4q

Tµ
µ (p, q)

q2 + i�
, (3)

where we work in the nucleon rest frame pµ = (M,0),
α = e2/4π and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the
integration contour to imaginary photon energy, the nu-
cleon self-energy can be related to the structure functions
arising from the scattering of space-like photons through
dispersion theory, giving rise to what is known as Cot-
tingham’s formula (the Cottingham sum rule) [29, 31]. In
principle, this allows the integral in Eq. (3) to be com-
puted in a model independent fashion with input from ex-
perimental data. There are a few issues which complicate
the realization of this method: a subtracted dispersive
analysis is required introducing an unknown subtraction
function [32, 33]; the integral in Eq. (3) diverges loga-
rithmically in the ultra-violet region and requires renor-
malization [34]. We review these issues briefly.
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Lorentz invariance significantly constrains the form of

Tµν , for which there are two common parameterizations,

Tµν(p, q) = −D(1)
µν T1(ν,−q2) +D(2)

µν T2(ν,−q2) (4a)

= d(1)µν q2t1(ν,−q2)− d(2)µν q
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where p · q = Mν and
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M2

�
pµ − p · q
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��
pν − p · q

q2
qν

�
. (5)

Performing the Wick rotation ν → iν and the variable

transformation Q2
= q2

+ ν2, the self-energy becomes

δMγ
=

α

8π2

� Λ2

0
dQ2

� +Q

−Q
dν

�
Q2 − ν2

Q2

Tµ
µ

M
+ δM ct

(Λ) (6)

where δM ct
(Λ) derives from counterterms required for

renormalization [34] and the Lorentz contracted Comp-

ton tensor is

Tµ
µ = −3T1(iν, Q

2
) +

�
1− ν2

Q2

�
T2(iν, Q

2
) , (7a)

= −3Q2 t1(iν, Q
2
) +

�
1 + 2

ν2

Q2

�
Q2t2(iν, Q

2
) . (7b)

The scalar functions (Ti, ti) can be evaluated using a dis-

persive analysis. It is known the (T1, t1) functions re-

quire a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted disper-

sion relation [32]. In Ref. [28], it was claimed the elastic

contributions to t1 could be evaluated with an unsub-

tracted dispersive analysis. However, performing an un-

subtracted dispersive analysis of the elastic contributions

to Eqs. (7) by inserting a complete set of elastic states

into Eq. (2), leads to inconsistent results:

δMel
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with τel ≡ Q2

4M2 . If both parameterizations of the elastic

contribution were to satisfy unsubtracted dispersion rela-

tions, the following positive-definite integral would have

to vanish
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in

terms of ti and vice versa, and to demonstrate that if the

elastic contributions to T1(t1) do not satisfy an unsub-

tracted dispersive analysis, then neither will the elastic

contributions to t1(T1). Eq. (8b) was used in Ref. [28]

and is often quoted as the elastic contribution to the nu-

cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a

subtracted dispersive analysis of (T1, t1), and an unsub-

tracted analysis of (T2, t2), using a mass-independent

renormalization scheme (dimensional regularization) one

arrives at [34]
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where τ = ν2/Q2
, Fi(ν, Q2

) are the standard nucleon

structure functions and νth = mπ + (m2
π +Q2

)/2M ;
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One must use a subtracted dispersive 
integral even for elastic terms

typically quoted as elastic Cottingham
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in
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tracted dispersive analysis, then neither will the elastic
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where C1,i are Wilson coefficients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and δM̃ ct is a remaining finite contribution with residual
scale dependence. The scales Λ0 and Λ1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2δ = md −mu
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with eu = 2/3 and ed = −1/3. In QCD, mu,d ∼ δ, so the entire contribution is numerically second order in
isospin breaking, O(αδ), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
Λ2
1 = 100 GeV2, Λ2

0 = 2 GeV2 yields |δM̃ ct
p−n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ→∞ T1(0, Q2) ∼ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]
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where κ ≡ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and βM is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµν

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
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The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
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Tµν , for which there are two common parameterizations,
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Performing the Wick rotation ν → iν and the variable
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The scalar functions (Ti, ti) can be evaluated using a dis-

persive analysis. It is known the (T1, t1) functions require
a subtracted dispersive analysis while the (T2, t2) func-

tions can be evaluated with an unsubtracted dispersion

relation [32, 33]. In Ref. [28], it was claimed the elastic

contributions to t1 could be evaluated with an unsub-

tracted dispersive analysis. However, performing an un-

subtracted dispersive analysis of the elastic contributions

to Eqs. (7) by inserting a complete set of elastic states

into Eq. (2), leads to inconsistent results:
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with τel ≡ Q2

4M2 . If both parameterizations of the elastic

contribution were to satisfy unsubtracted dispersion rela-

tions, the following positive-definite integral would have

to vanish
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in

terms of ti and vice versa, and to demonstrate that if the

elastic contributions to T1(t1) do not satisfy an unsub-

tracted dispersive analysis, then neither will the elastic

contributions to t1(T1). Eq. (8b) was used in Ref. [28]

and is often quoted as the elastic contribution to the nu-

cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a

subtracted dispersive analysis of (T1, t1), and an unsub-

tracted analysis of (T2, t2), using a mass-independent

renormalization scheme (dimensional regularization) one

arrives at [34]
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what is the flaw in the argument?
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with τel ≡ Q2

4M2 . If both parameterizations of the elastic

contribution were to satisfy unsubtracted dispersion rela-

tions, the following positive-definite integral would have

to vanish

3α

2π

� ∞

0
dQ

√
τel

G2
E(Q

2
) + τelG2

M (Q2
)

1 + τel
. (9)

Equating Eqs. (4a) and (4b) allows one to solve for Ti in

terms of ti and vice versa, and to demonstrate that if the

elastic contributions to T1(t1) do not satisfy an unsub-

tracted dispersive analysis, then neither will the elastic

contributions to t1(T1). Eq. (8b) was used in Ref. [28]

and is often quoted as the elastic contribution to the nu-

cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a

subtracted dispersive analysis of (T1, t1), and an unsub-

tracted analysis of (T2, t2), using a mass-independent

renormalization scheme (dimensional regularization) one

arrives at [34]
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where τ = ν2/Q2
, Fi(ν, Q2

) are the standard nucleon
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Lorentz invariance significantly constrains the form of

Tµν , for which there are two common parameterizations,

Tµν(p, q) = −D(1)
µν T1(ν,−q2) +D(2)

µν T2(ν,−q2) (4a)
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+ ν2, the self-energy becomes

δMγ
=

α

8π2

� Λ2

0
dQ2

� +Q

−Q
dν

�
Q2 − ν2

Q2

Tµ
µ

M
+ δM ct

(Λ) (6)

where δM ct
(Λ) derives from counterterms required for

renormalization [34] and the Lorentz contracted Comp-

ton tensor is

Tµ
µ = −3T1(iν, Q

2
) +

�
1− ν2

Q2

�
T2(iν, Q

2
) , (7a)

= −3Q2 t1(iν, Q
2
) +

�
1 + 2

ν2

Q2

�
Q2t2(iν, Q

2
) . (7b)
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sion relation [32]. In Ref. [28], it was claimed the elastic

contributions to t1 could be evaluated with an unsub-
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is there some motivation to pick     vs      ? ti Ti
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what is the flaw in the argument?

in the point limit (electron) t1(ν, Q
2) = 0!

t1(ν, Q
2) =

2

Q2



 Q4G2
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E
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(Q2 − i�)2 − 4M2ν2
−
�
F 2
1 − G2

E + τG2
M

1 + τ

�



for the nucleon (with motivated resummations) the elastic 
contribution is

� �� �

“Fixed-Pole” missed by 
unsubtracted dispersion relation
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what is the flaw in the argument?

in the point limit (electron) t1(ν, Q
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

for the nucleon (with motivated resummations) the elastic 
contribution is
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numerically, this term is negligible
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

what is the flaw in the argument?

in the point limit (electron) t1(ν, Q
2) = 0!

real problem comes in the Regge limit:

Imt1(ν, Q
2) =

πMν

Q4

�
2xF1(x,Q

2)− F2(x,Q
2)
�

x =
Q2

2Mν

in the strict DIS limit: Callan-Gross relation

Q2 fixed, ν → ∞

2xF1(x)− F2(x) = 0
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

what is the flaw in the argument?

in the point limit (electron) t1(ν, Q
2) = 0!

real problem comes in the Regge limit:

Gasser and Leutwyler assumed 

2xF1(x,Q
2)− F2(x,Q

2) =
H1(x)

ν

Q2 fixed, ν → ∞

if this were true, their argument would go through, however...

Imt1(ν, Q
2) =

πMν

Q4

�
2xF1(x,Q

2)− F2(x,Q
2)
�

x =
Q2

2Mν
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Gasser and Leutwyler: Nucl Phys B94 (1975), Phys. Rept. 87 (1982)

what is the flaw in the argument?

in the point limit (electron) t1(ν, Q
2) = 0!

real problem comes in the Regge limit:

Zee, Wilczek and Treiman  Phys.Rev. D10 (1974)

J.C. Collins: Nucl. Phys. B149 (1979)

Q2 fixed, ν → ∞

2xF1(x)− F2(x) =
−32

9

αs(Q2)

4π
F2(x)

Imt1(ν, Q
2) =

πMν

Q4

�
2xF1(x,Q

2)− F2(x,Q
2)
�

x =
Q2

2Mν

This criticism first given by 

Both IR and 
UV safe
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what is the flaw in the argument?

in the point limit (electron) t1(ν, Q
2) = 0!

real problem comes in the Regge limit: Q2 fixed, ν → ∞

lim
x→0

F p−n
2 (x) ∝ x1/2

x =
Q2

2Mν

Imtp−n
1 (ν, Q2) ∝ αs(Q

2)

√
Mν

Q3

subtracted dispersion integral is unavoidable
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evaluation of various contributions
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where τ = ν2/Q2, Fi(ν, Q2) are the standard nucleon structure functions and νth = mπ + (m2
π +Q2)/2M ;

δMsub = − 3α

16πM

� Λ2
0

0
dQ2 T1(0, Q

2) , (13)

and

δM̃ ct = − 3α

16πM

� Λ2
1

Λ2
0

dQ2
�

i

C1,i�Oi,0� , (14)

where C1,i are Wilson coefficients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and δM̃ ct is a remaining finite contribution with residual
scale dependence. The scales Λ0 and Λ1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2δ = md −mu

δM̃ ct
p−n = 3α ln

�
Λ2
0

Λ2
1

�
e2umu − e2dmd

8πMδ
�p|δ(ūu − d̄d)|p� (15)

with eu = 2/3 and ed = −1/3. In QCD, mu,d ∼ δ, so the entire contribution is numerically second order in
isospin breaking, O(αδ), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
Λ2
1 = 100 GeV2, Λ2

0 = 2 GeV2 yields |δM̃ ct
p−n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ→∞ T1(0, Q2) ∼ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]

T1(0, Q
2) = 2κ(2 + κ)−Q2

�
2

3

�
(1 + κ)2r2M − r2E

�

+
κ

M2
− 2M

βM

α

�
+O(Q4) , (16)

where κ ≡ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and βM is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµν

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2

0)
−2, such that it has the correct asymptotic limits as Q2 → 0,∞. The parameter m2

0
should be a typical hadronic scale and we will take m2

0 = 0.71 GeV2. The subtraction term is then approximated by
two pieces which have the correct low and high Q2 limiting behavior,

T1(0, Q
2) � 2G2

M (Q2)− 2F 2
1 (Q

2)

+Q22M
βM

α

�
m2

0

m2
0 +Q2

�2

, (17)

δMel
���
p−n

= 1.39(02) MeV

insensitive to value of         since form factors fall as 

1.5 GeV2 ≤ Λ2
0 ≤ 2.5 GeV2

Λ0

Λ2
0 = 2 GeV2

1/Q4

central values:

uncertainties:

uncertainty from Monte Carlo evaluation of 
parameters describing form factors
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Wtrans = 3.1 GeV as the transition between the two pa-
rameterizations, the inelastic contribution is

δM inel
��
p−n

= 0.057(16) MeV. (20)

The uncertainties are estimated by the range of Λ2
0 given

above as well as varying the transition value of W be-
tween 2.5 < Wtrans < 3.5 GeV. These two variations
dominate the uncertainty estimate. The numerical inte-
gration is insensitive to the upper limit of the W integra-
tion through Wmax ∼ 200 GeV (or x ∼ 10−4).

We are left with the subtraction terms. Using the
model assumptions described above, the contribution
from the elastic subtraction term, Eq. (18a), is

δMsub
el

��
p−n

= −0.62(02) MeV (21)

It is interesting to note the sum of Eqs. (19) and (21)
is surprisingly close to that of Ref. [28] (although the
individual proton and neutron elastic self energies are
different).

The most troublesome contribution to evaluate is that
of the inelastic subtraction term, Eq. (18b). This contri-
bution is proportional to the isovector nucleon magnetic
polarizability βp−n. The determination of this isovec-
tor quantity was part of the motivation for the recent
deuterium Compton scattering experiment, MAX-Lab at
Lund [49], for which we are still awaiting results. The
HIGS experiment [50] at TUNL will also help determine
this quantity. From chiral perturbation theory, one ex-
pects the isovector polarizabilities to be small; the lead-
ing contribution to the polarizabilities occurs at order
P 3 and these are purely isoscalar. The isovector contri-
butions arise at order P 4 and are suppressed in the chiral
power counting [51]. A recent review provides the con-
servative estimate βp−n = −1± 1× 10−4 fm3 [30]. Using
this in Eq. (18b) provides the determination

δMsub
inel

��
p−n

= 0.47± 0.47 MeV , (22)

(a smaller value of m2
0 would reduce these values).

Adding all the various contributions, Eqs. (19), (20),
(21) and (22), we arrive at

δMγ |p−n = 1.30(03)(47) MeV , (23)

where the second uncertainty arises from the inelastic
contribution to the subtraction term. Clearly, any im-
provement in our knowledge of βp−n will significantly
improve our ability to determine the electromagnetic con-
tribution to Mp −Mn.

The isovector magnetic polarizability– Within the
model assumptions used to arrive at Eqs. (18), we can
combine the experimental value for Mn − Mp with lat-
tice QCD determinations of the md − mu contribu-
tion. There are three published numbers from lattice
QCD [13, 15, 17], which are uncorrelated. For each re-
sult, we combine the quoted uncertainties in quadrature,
and then perform a simple weighted mean, arriving at

δM latt
md−mu

��
p−n

= −2.53(40) MeV . (24)

Combining this with Eqs. (1), (18b), (19), (20), (21) and
our value for m2

0, we find

βp−n = −0.87(85)× 10−4 fm3 , (25)

in good agreement with current estimates [30].
Model independence– One can infer the nucleon isovec-

tor electromagnetic self-energy without recourse to mod-
els by utilizing the known mass splitting, Eq. (1), com-
bined with the lattice QCD determination of the of the
contribution from md −mu, Eq. (24),

δMγ
p−n = 1.24(40) MeV . (26)

Combined with Eqs. (19) and (20), this can be trans-
lated into a model-independent bound on the unknown
subtraction function

3α

16πM

� Λ2
0

0
dQ2 T p−n

1 (0, Q2) = 0.21(02)(40) MeV . (27)

This is compared with Eqs. (21) and (22) which give
0.15(02)(47) MeV for the same quantity. This bound
demonstrates that our treatment of the subtraction func-
tion, while not model-independent, is also not wildly
speculative, but in agreement with the combined con-
straint of experiment and lattice QCD.

Conclusions– We have provided a modern and ro-
bust determination of the isovector electromagnetic self-
energy contribution, δMγ

p−n = 1.30(03)(47). A technical
oversight in the evaluation of the elastic contribution was
highlighted resulting in a larger central value than pre-
viously obtained [28]. Modern knowledge of the struc-
ture functions was used to constrain the elastic and in-
elastic contributions, reducing the uncertainty from these
sources by an order of magnitude (±0.30 MeV [28] com-
pared to our ±0.03 MeV). However, a careful analysis
of the subtraction function has yielded an overall larger
uncertainty than previously recognized. The larger cen-
tral value suggests a larger contribution to Mp − Mn

from md −mu, consistent with expectations from lattice
QCD, thus impacting the phenomenology of Refs. [22–
27]. With plausible model assumptions and additional
input from lattice QCD, this knowledge can be used to
provide a competitive estimate of the nucleon isovector
magnetic polarizability, albeit still with a 100% uncer-
tainty. Alternatively, a bound can be placed on the un-
known subtraction function, which can not otherwise be
determined, and lends further support for our determi-
nation of βp−n.
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where κ ≡ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
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However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµν

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2

0)
−2, such that it has the correct asymptotic limits as Q2 → 0,∞. The parameter m2

0

contributions from two regions:
resonance region
scaling region

uncertainty dominated by choice of transition 
between two regions

Bosted and Christy: Phys.Rev. C77, C81
Capella et al: PLB 337
Sibirtsev et al: Phys. Rev. D82
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renormalization: no time to discuss properly

summary: (J.C. Collins) with Naive Dimensional Analysis and 
suitable renormalization (dim. reg.) one can show the 
contribution from the operator is numerically second order in 
isospin breaking

quark mass operator renormalizes EM self-energy: can not 
cleanly separate these two contributions (but mixing is higher 
order in isospin breaking)

3

with

δMel =
α

π

� Λ2
0

0
dQ

�
3
√
τelG2

M

2(1 + τel)
+

�
G2

E − 2τel G2
M

�

1 + τel

�
(1 + τel)

3/2 − τel
3/2 − 3

2

√
τel

��
, (11)

δM inel =
α

π

� Λ2
0

0

dQ2

2Q

� ∞

νth

dν

�
3F1(ν, Q2)

M

�
τ3/2 − τ

√
1 + τ +

√
τ/2

τ

�

+
F2(ν, Q2)

ν

�
(1 + τ)3/2 − τ3/2 − 3

2

√
τ

��
, (12)

where τ = ν2/Q2, Fi(ν, Q2) are the standard nucleon structure functions and νth = mπ + (m2
π +Q2)/2M ;

δMsub = − 3α

16πM

� Λ2
0

0
dQ2 T1(0, Q

2) , (13)

and

δM̃ ct = − 3α

16πM

� Λ2
1

Λ2
0

dQ2
�

i

C1,i�Oi,0� , (14)

where C1,i are Wilson coefficients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and δM̃ ct is a remaining finite contribution with residual
scale dependence. The scales Λ0 and Λ1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2δ = md −mu

δM̃ ct
p−n = 3α ln

�
Λ2
0

Λ2
1

�
e2umu − e2dmd

8πMδ
�p|δ(ūu− d̄d)|p� (15)

with eu = 2/3 and ed = −1/3. In QCD, mu,d ∼ δ, so the entire contribution is numerically second order in
isospin breaking, O(αδ), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
Λ2
1 = 100 GeV2, Λ2

0 = 2 GeV2 yields |δM̃ ct
p−n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ→∞ T1(0, Q2) ∼ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]

T1(0, Q
2) = 2κ(2 + κ)−Q2

�
2

3

�
(1 + κ)2r2M − r2E

�

+
κ

M2
− 2M

βM

α

�
+O(Q4) , (16)

where κ ≡ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and βM is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµν

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2

0)
−2, such that it has the correct asymptotic limits as Q2 → 0,∞. The parameter m2

0
should be a typical hadronic scale and we will take m2

0 = 0.71 GeV2. The subtraction term is then approximated by

���δM̃ ct
p−n

��� < 0.02 MeV
2δ = md −mu
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subtraction term: most challenging part - dealing with unknown 
subtraction function

2

Tµν , for which there are two common parameterizations,

Tµν(p, q) = −D(1)
µν T1(ν,−q2) +D(2)

µν T2(ν,−q2) (4a)

= d(1)µν q2t1(ν,−q2)− d(2)µν q
2t2(ν,−q2) (4b)

where p · q = Mν and

d(1)µν = D(1)
µν = gµν − qµqν

q2
,
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1
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�
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�
,

D(2)
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�
pµ − p · q

q2
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��
pν − p · q

q2
qν

�
, (5)

Performing the Wick rotation ν → iν and the variable

transformation Q2
= q2

+ ν2, the self-energy becomes

δMγ
=

α

8π2

� Λ2

0
dQ2

� +Q

−Q
dν

�
Q2 − ν2

Q2

Tµ
µ

M
+ δM ct

(Λ) (6)

where δM ct
(Λ) derives from counterterms required for

renormalization [34] and the Lorentz contracted Comp-

ton tensor is

Tµ
µ = −3T1(iν, Q

2
) +

�
1− ν2

Q2

�
T2(iν, Q

2
) , (7a)

= −3Q2 t1(iν, Q
2
) +

�
1 + 2

ν2

Q2

�
Q2t2(iν, Q

2
) . (7b)

The scalar functions (Ti, ti) can be evaluated using a dis-

persive analysis. It is known the (T1, t1) functions require
a subtracted dispersive analysis while the (T2, t2) func-

tions can be evaluated with an unsubtracted dispersion

relation [32, 33]. In Ref. [28], it was claimed the elastic

contributions to t1 could be evaluated with an unsub-

tracted dispersive analysis. However, performing an un-

subtracted dispersive analysis of the elastic contributions

to Eqs. (7) by inserting a complete set of elastic states

into Eq. (2), leads to inconsistent results:

δMel
unsub,a =

α

π
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0
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δMel
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+ 3G2

M (Q2
)
τel3/2

1 + τel

�
, (8b)

with τel ≡ Q2

4M2 . If both parameterizations of the elastic

contribution were to satisfy unsubtracted dispersion rela-

tions, the following positive-definite integral would have

to vanish

3α

2π

� ∞

0
dQ

√
τel

G2
E(Q

2
) + τelG2

M (Q2
)

1 + τel
. (9)

Equating Eqs. (4a) and (4b) allows one to solve for Ti in

terms of ti and vice versa, and to demonstrate that if the

elastic contributions to T1(t1) do not satisfy an unsub-

tracted dispersive analysis, then neither will the elastic

contributions to t1(T1). Eq. (8b) was used in Ref. [28]

and is often quoted as the elastic contribution to the nu-

cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a

subtracted dispersive analysis of (T1, t1), and an unsub-

tracted analysis of (T2, t2), using a mass-independent

renormalization scheme (dimensional regularization) one

arrives at [34]

δMγ
= δMel

+ δM inel
+ δMsub

+ δM̃ ct , (10)

with

δMel
=

α

π

� Λ2
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, (12)

where τ = ν2/Q2
, Fi(ν, Q2

) are the standard nucleon

structure functions and νt = mπ + (m2
π +Q2

)/2M ;

δMsub
= − 3α

16πM

� Λ2
0

0
dQ2 T1(0, Q

2
) , (13)

and

δM̃ ct
= − 3α

16πM

� Λ2
1

Λ2
0

dQ2
�

i

C1,i�Oi,0� , (14)

low energy: constrained by effective field theory

3

with

δMel =
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δM inel =
α

π
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where τ = ν2/Q2, Fi(ν, Q2) are the standard nucleon structure functions and νth = mπ + (m2
π +Q2)/2M ;

δMsub = − 3α

16πM

� Λ2
0

0
dQ2 T1(0, Q

2) , (13)

and

δM̃ ct = − 3α

16πM

� Λ2
1

Λ2
0

dQ2
�

i

C1,i�Oi,0� , (14)

where C1,i are Wilson coefficients determined from the operator product expansion of the counterterms [? ]. The UV
divergence has been entirely cancelled by the counterterm and δM̃ ct is a remaining finite contribution with residual
scale dependence. The scales Λ0 and Λ1 can be chosen arbitrarily provided their values are in the asymptotic scaling
region. Restricting our attention to the isospin breaking contribution, with 2δ = md −mu

δM̃ ct
p−n = 3α ln

�
Λ2
0

Λ2
1

�
e2umu − e2dmd

8πMδ
�p|δ(ūu− d̄d)|p� (15)

with eu = 2/3 and ed = −1/3. In QCD, mu,d ∼ δ, so the entire contribution is numerically second order in
isospin breaking, O(αδ), and for practical purposes can be neglected [? ]. Estimating the size of this term, with
Λ2
1 = 100 GeV2, Λ2

0 = 2 GeV2 yields |δM̃ ct
p−n| < 0.02 MeV.

The remaining contribution to the self-energy is the subtraction term, which can not be directly related to exper-
imentally measured cross sections. We now have a better theoretical understanding of this term enabling a more
robust determination of its contribution than has been previously made. While the function is not known, the low
and high Q2 limits can be determined in a model independent fashion; the asymptotic region is constrained by the
operator product expansion (OPE) to scale as limQ→∞ T1(0, Q2) ∼ 1/Q2 [? ] while the low Q2 limit is fixed by
non-relativistic QED [? ? ? ? ? ]

T1(0, Q
2) = 2κ(2 + κ)−Q2

�
2

3

�
(1 + κ)2r2M − r2E

�
+

κ

M2
− 2M

βM

α

�
+O(Q4) , (16)

where κ ≡ F2(0) is the anomalous magnetic moment, rE(rM ) is proportional to the slope of the electric (magnetic) form
factor and commonly denoted as the nucleon electric (magnetic) charge radius and βM is the magnetic polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are recognized as the low-Q2 expansion of elastic form factors and
the magnetic polarizability term is the leading inelastic contribution. In evaluating the elastic contributions to Tµν

only the elastic u-spinors need be used in the dispersion relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-limit (as for the electron), and vertex functions with ordinary
F1 and F2 form factor contributions, then the specific elastic terms of Eq. (16) would arise [? ? ]. This suggests a
re-summation in which one uses the appropriate elastic form factors. The inelastic contribution can be multiplied by
a dipole form factor (1 +Q2/m2

0)
−2, such that it has the correct asymptotic limits as Q2 → 0,∞. The parameter m2

0
should be a typical hadronic scale and we will take m2

0 = 0.71 GeV2. The subtraction term is then approximated by
two pieces which have the correct low and high Q2 limiting behavior,

T1(0, Q
2) � 2G2

M (Q2)− 2F 2
1 (Q

2)

+Q22M
βM

α

�
m2

0

m2
0 +Q2
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, (17)

K. Pachucki: Phys. Rev. A53 (1996);  A. Pineda: Phys. Rev. C67 (2003); Phys. Rev. C71 (2005);  
R.J. Hill, G. Paz: PRL 107 (2011);  C. Carlson, M. Vanderhaeghen: Phys.Rev.A84 (2011); arXiv1109.3779;  
M.. Birse, J. McGovern: arXiv:1206.3030

intimately related to the proton size puzzle which suffers from the 
same subtracted dispersive problem

most of these contributions come from Low Energy Theorems and are 
“elastic” (arising from a photon striking an on-shell nucleon)
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subtraction term: most challenging part - dealing with unknown 
subtraction function

2

Tµν , for which there are two common parameterizations,

Tµν(p, q) = −D(1)
µν T1(ν,−q2) +D(2)

µν T2(ν,−q2) (4a)

= d(1)µν q2t1(ν,−q2)− d(2)µν q
2t2(ν,−q2) (4b)

where p · q = Mν and

d(1)µν = D(1)
µν = gµν − qµqν
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,
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,
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, (5)

Performing the Wick rotation ν → iν and the variable

transformation Q2
= q2

+ ν2, the self-energy becomes

δMγ
=

α

8π2
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M
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where δM ct
(Λ) derives from counterterms required for

renormalization [34] and the Lorentz contracted Comp-

ton tensor is

Tµ
µ = −3T1(iν, Q
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) +
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) , (7a)

= −3Q2 t1(iν, Q
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) +
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1 + 2
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Q2t2(iν, Q
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) . (7b)

The scalar functions (Ti, ti) can be evaluated using a dis-

persive analysis. It is known the (T1, t1) functions require
a subtracted dispersive analysis while the (T2, t2) func-

tions can be evaluated with an unsubtracted dispersion

relation [32, 33]. In Ref. [28], it was claimed the elastic

contributions to t1 could be evaluated with an unsub-

tracted dispersive analysis. However, performing an un-

subtracted dispersive analysis of the elastic contributions

to Eqs. (7) by inserting a complete set of elastic states

into Eq. (2), leads to inconsistent results:
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with τel ≡ Q2

4M2 . If both parameterizations of the elastic

contribution were to satisfy unsubtracted dispersion rela-

tions, the following positive-definite integral would have

to vanish

3α

2π

� ∞

0
dQ

√
τel

G2
E(Q

2
) + τelG2
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Equating Eqs. (4a) and (4b) allows one to solve for Ti in

terms of ti and vice versa, and to demonstrate that if the

elastic contributions to T1(t1) do not satisfy an unsub-

tracted dispersive analysis, then neither will the elastic

contributions to t1(T1). Eq. (8b) was used in Ref. [28]

and is often quoted as the elastic contribution to the nu-

cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a

subtracted dispersive analysis of (T1, t1), and an unsub-

tracted analysis of (T2, t2), using a mass-independent

renormalization scheme (dimensional regularization) one

arrives at [34]

δMγ
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+ δM inel
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+ δM̃ ct , (10)

with
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where τ = ν2/Q2
, Fi(ν, Q2

) are the standard nucleon

structure functions and νt = mπ + (m2
π +Q2

)/2M ;

δMsub
= − 3α

16πM
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0

0
dQ2 T1(0, Q
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) , (13)

and
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16πM
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high energy: OPE (perturbative QCD) constrains

lim
Q2→∞

T1(0, Q
2) ∝ 1

Q2

T1(0, Q
2) � 2G2

M (Q2)− 2F 2
1 (Q

2) +Q22M
βM
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0 +Q2

�2

Birse and McGovern arXiv:1206.3030

O(Q4) inelastic terms known
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3

where C1,i are Wilson coefficients determined from the
operator product expansion of the counterterms [34].
The UV divergence has been entirely cancelled by the
counterterm and δM̃ ct is a remaining finite contribution
with residual scale dependence. The scales Λ0 and Λ1

can be chosen arbitrarily provided their values are in the
asymptotic scaling region. Restricting our attention to
the isospin breaking contribution, with 2δ = md −mu

δM̃ ct
p−n = 3α ln

�
Λ2
0

Λ2
1

�
e2umu − e2dmd

8πMδ
�p|δ(ūu− d̄d)|p�

(15)

with eu = 2/3 and ed = −1/3. In QCD, mu,d ∼ δ, so the
entire contribution is numerically second order in isospin
breaking, O(αδ), and for practical purposes can be ne-
glected [34]. Estimating the size of this term, with Λ2

1 =
100 GeV2, Λ2

0 = 2 GeV2 yields |δM̃ ct
p−n| < 0.02 MeV.

The remaining contribution to the self-energy is the
subtraction term, which can not be directly related to
experimentally measured cross sections. We now have a
better theoretical understanding of this term enabling
a more robust determination of its contribution than
has been previously made. While the function is not
known, the low and high Q2 limits can be determined
in a model independent fashion; the asymptotic region is
constrained by the operator product expansion (OPE) to
scale as limQ→∞ T1(0, Q2) ∼ 1/Q2 [34] while the low Q2

limit is fixed by non-relativistic QED [35–39]

T1(0, Q
2) = 2κ(2 + κ)−Q2

�
2

3

�
(1 + κ)2r2M − r2E

�

+
κ

M2
− 2M

βM

α

�
+O(Q4) , (16)

where κ ≡ F2(0) is the anomalous magnetic moment,
rE(rM ) is proportional to the slope of the electric (mag-
netic) form factor and commonly denoted as the nucleon
electric (magnetic) charge radius and βM is the magnetic
polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges
quadratically resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form
required by the OPE, so we are necessarily led to intro-
duce model dependence. The first few terms in Eq. (16)
are recognized as the low-Q2 expansion of elastic form
factors and the magnetic polarizability term is the lead-
ing inelastic contribution. In evaluating the elastic con-
tributions to Tµν only the elastic u-spinors need be used
in the dispersion relation. If one uses the full Feynman
propagator in the full amplitude, a procedure known to
be correct in the point-limit (as for the electron), and
vertex functions with ordinary F1 and F2 form factor
contributions, then the specific elastic terms of Eq. (16)
would arise [39, 40]. This suggests a re-summation in
which one uses the appropriate elastic form factors. The
inelastic contribution can be multiplied by a dipole form
factor (1+Q2/m2

0)
−2, such that it has the correct asymp-

totic limits as Q2 → 0,∞. The parameterm2
0 should be a

typical hadronic scale and we will take m2
0 = 0.71 GeV2.

The subtraction term is then approximated by two pieces
which have the correct low and high Q2 limiting behav-
ior,
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2) � 2G2

M (Q2)− 2F 2
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2)

+Q22M
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leading to the convenient separation
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16πM

� Λ2
0

0
dQ2

�
2G2

M − 2F 2
1

�
, (18a)

δMsub
inel = −3βM

8π

� Λ2
0

0
dQ2Q2

�
m2

0

m2
0 +Q2

�2

. (18b)

The second term, generated using the model assumptions
described above, will cause the largest uncertainties, as
we show below.
Evaluation of contributions– In all subsequent evalua-

tions, we take Λ2
0 = 2 GeV2 for our central values and the

range 1.52 < Λ2
0 < 2.5 GeV2 to estimate uncertainties.

We begin with an evaluation of the elastic contribution,
Eq. (11). The form factors are well measured over the
kinematic range required by the integrals, which are rep-
resented by a number of analytic fits. The elastic contri-
butions converge well at the upper limit, which may be
taken to infinity with negligible error. Using the Kelly
parameterization of the form factors [41], or an updated
version [42–44], the elastic contribution is given by

δMel
��
p−n

= 1.39(02) MeV . (19)

The uncertainty is determined through an uncorrelated
Monte-Carlo evaluation of the fit parameters in the
parametrization.It is also interesting to note, that if the
simple dipole parameterization of the form factors is
used, the same value within the quoted uncertainty is
obtained.
In the inelastic contribution, Eq. (12), most of the

support for the integrals lies in the resonance region,
where there are good data from JLab, and there are
analytic fits valid in the resonance region for both the
neutron and proton structure functions from Bosted and
Christy [45, 46] (we also remind the reader the neu-
tron functions are determined from deuterium-Compton
scattering with the additional uncertainties captured in
the coefficients of the neutron functions, and propagated
into our uncertainties through a Monte-Carlo treatment).
Their quoted range of validity includes Q2 up to 8 GeV2

and W up to 3.1 GeV (W 2 = M2 + 2Mν − Q2). To
extend the W range, we use the parameterizations of
Refs. [47, 48] which fit proton structure functions in the
diffraction region using forms recognizable as Pomeron
and rho meson Regge trajectories. The former is isoscalar
and the latter isovector, so we have a straightforward ex-
tension to the neutron case. Taking Λ2

0 = 2 GeV2 and

subtraction term: most challenging part - dealing with unknown 
subtraction function

δMsub
el

���
p−n

= −0.62 MeV

βp−n
M = −1.0± 1.0× 10−4 fm3

H.W. Griesshammer, J.A. 
McGovern, D.R. Phillips, G. 
Feldman: Prog.Nucl.Part.Phys. 
(2012)

taking m2
0 = 0.71 GeV2

δMsub
inel

���
p−n

= 0.47± 0.47 MeV



Cottingham’s Formula AWL, C.Carlson, G.Miller: PRL 108 (2012)

adding it all up:

δMγ |p−n =+ 1.39(02)

− 0.62(02)

+ 0.057(16)

+ 0.47(47) MeV

= 1.30(03)(47) MeV

= 0.77(03) MeV
elastic 
terms

inelastic terms

unknown subtraction term

recall the fixed pole in the elastic contribution makes a 
negligible contribtion



Cottingham’s Formula AWL, C.Carlson, G.Miller: PRL 108 (2012)

adding it all up:

δMγ
���
p−n

= 1.30(03)(47) MeV AWL, C.Carlson, G.Miller: 
PRL 108 (2012)

= 0.76(30) MeV J. Gasser and H. Leutwyler: 
Nucl Phys B94 (1975)

We reduced the uncertainty from structure by an order of 
magnitude!  But we uncovered an oversight that dominates the 
uncertainty   :(



Cottingham’s Formula AWL, C.Carlson, G.Miller: PRL 108 (2012)

adding it all up:

δMγ
���
p−n

= 1.30(03)(47) MeV AWL, C.Carlson, G.Miller: 
PRL 108 (2012)

= 0.76(30) MeV J. Gasser and H. Leutwyler: 
Nucl Phys B94 (1975)

expectation from experiment + lattice QCD

δMγ
���
p−n

= −1.29333217(42) + 2.53(40) MeV

= 1.24(40) MeV

average of 3 independent lattice 
results



Baryons and lattice QCD: Conclusions
attempt to improve the old determination of nucleon iso-vector EM 
self-energy uncovered an oversight

a central value was found in much better agreement with 
expectations from lattice QCD + experiment

modeling was necessary to control uncertainty
subtraction function

comparison with independent determinations of iso-vector 
nucleon magnetic polarizability show the modeling is not crazy

improvements will come from three areas

lattice QCD calculation of βp−n
M

improved measurement of βp−n
M

including EM effects with lattice QCD:  

no avoiding the subtraction (dispersion integral)

Brian Tiburzi’s Talk

Taku Izubuchi’s Talk



Fin


