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Form factors considered

Electromagnetic form factors of light pseudoscalar mesons: P = 7, K J

o (PH(P)EIP*(p)) = (p+ P)uFe(t)

Form factors relevant for weak semileptonic transitions: P — w, P = K, D, B J

o (n(p")Iyeek|PO(p)) = (P + P)ufi(t) + (p — p')uf—(t)

e fy(t): vector form factor

o fo(t) = fr(t) + Wf,(t): scalar form factor

In the general discussion Fp(t) and fi(t) shall be denoted generically as F(t) J
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Basic properties

Theoretical description of F(t)
e at low energies: ChPT, lattice, QCD-SR
e at high t = —Q? < 0 perturbative QCD (1/t scaling)

e intermediate region: big uncertainties
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Basic properties

Theoretical description of F(t) =

e at low energies: ChPT, lattice, QCD-SR Imt

e at high t = —Q? < 0 perturbative QCD (1/t scaling)

e intermediate region: big uncertainties

Analyticity and unitarity

e Causality: F(t) real analytic function, F(t*) = F*(t), in the complex t-plane
with a cut along the real axis from the lowest unitarity threshold t; to infinity

e Unitarity: ImF(t + ie) = 0(t — ty) o(t)F*(t)F(t) + O(t — tin) Tin(t)
o(t) = /1 — ty/t: two particle phase space

= Fermi-Watson theorem: for t; < t < tj,, arg[F(t+ i€)] = d6(t),

&2i8(t) _q

4(t): phase-shift of the related scattering amplitude f(t) = St

e Complications: unphysical regions, anomalous thresholds (not encountered)
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Exploiting analyticity

e Dispersive representations
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Exploiting analyticity

e Dispersive representations
e Standard dispersion relation (Cauchy integral)

ar ’
F(t) _ 1 oo ImF(t' +ie)dt

= P (modulo subtractions)

Im F(t + ie) = o(t)f*(t)F(t) for t < tj,
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Exploiting analyticity

e Dispersive representations
e Standard dispersion relation (Cauchy integral)

ar ’
F(t) _ 1 oo ImF(t' +ie)dt

= P (modulo subtractions)

Im F(t + ie) = o(t)f*(t)F(t) for t < tj,

e Omnes (phase) representations

F(t) = P(t)exp <;t I dt,ﬂ)

t/(t'—t)

P(t): real polynomial (accounts for zeros: P(t;) = 0)

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Exploiting analyticity

e Dispersive representations
e Standard dispersion relation (Cauchy integral)

ar ’
F(t) _ 1 oo ImF(t' +ie)dt

= P (modulo subtractions)

Im F(t + ie) = o(t)f*(t)F(t) for t < tj,
e Omnes (phase) representations
F(t) = P(t) exp( S22 dt! YL >t))
P(t): real polynomial (accounts for zeros: P(t;) = 0)

e Representation in terms of modulus

Fe) = B oo (V5 v Bl )

B(t): Blaschke factor (|B(t)| =1 for t > ty, B(t;) = 0)
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Exploiting analyticity

e Dispersive representations
e Standard dispersion relation (Cauchy integral)

ar ’
F(t) _ 1 oo ImF(t' +ie)dt

= P (modulo subtractions)

Im F(t + ie) = o(t)f*(t)F(t) for t < tj,
e Omnes (phase) representations
F(t) = P(t) exp( S22 dt! YL >t))
P(t): real polynomial (accounts for zeros: P(t;) = 0)

e Representation in terms of modulus

Fe) = B oo (V5 v Bl )

B(t): Blaschke factor (|B(t)| =1 for t > ty, B(t;) = 0)

e Analytic parametrizations - little predictive power outside their original range
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Okubo's approach

" Method of unitarity bounds” Okubo (1971), Micu (1973), Auberson et al (1975), Singh and
Raina (1979)

e Polarization tensor of the relevant current calculated from current algebra at
spacelike momenta

e Dispersion relation for the invariant polarization amplitudes

e Unitarity and positivity of the spectral functions

= an upper bound on an integral of the modulus squared of the form factor
along the unitarity cut

= mathematical techniques of complex analysis lead to bounds on the values of
the form factor and its derivatives at points inside the analyticity domain
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Okubo's approach

" Method of unitarity bounds” Okubo (1971), Micu (1973), Auberson et al (1975), Singh and
Raina (1979)

e Polarization tensor of the relevant current calculated from current algebra at
spacelike momenta

e Dispersion relation for the invariant polarization amplitudes

e Unitarity and positivity of the spectral functions

= an upper bound on an integral of the modulus squared of the form factor
along the unitarity cut

= mathematical techniques of complex analysis lead to bounds on the values of
the form factor and its derivatives at points inside the analyticity domain

e Modern version: the spacelike correlators are obtained from perturbative QCD
and OPE Bourrely, Machet, de Rafael (1981), de Rafael and Taron (1992)
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Illustration

® Polarization tensor of a relevant weak current V/,:
i Jd*x ™| T {V*(x)v* (0)' } 10) = (—" ¢ + g )Mi(¢?) + 9" 9" Tho(a?)

® Unsubtracted dispersion relations for suitable correlators

? 9 9 “C tlmﬂ )
loncan] - [a i

> "o thnl_lg(t)
xo(Q7) = dQZ [Q Mo(—Q )] —/ dfm
® Unitarity and the positivity of the spectral functions (t+ = (Mp + MW)Z)
[(t—t)(t—t )P
ImMy(t) > 32 e TAGE
ot [(e—ep)(e—t ))L/2
Imfo(t) > § 4gr th73|f0(t)‘2
= 1 [ p( F(t)]2dt < 1(Q%), 1(Q?) calculated from pQCD and OPE J
e
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Illustration

® Polarization tensor of a relevant weak current V/,:
i Jd*x ™| T {V*(x)v* (0)' } 10) = (—" ¢ + g )Mi(¢?) + 9" 9" Tho(a?)

® Unsubtracted dispersion relations for suitable correlators

(@) = 7%6(22)2 [@m(-a] = 1 [Ta
xo(@) = dQ? [@no(-@7)] = _/.mdt%

® Unitarity and the positivity of the spectral functions (t+ = (Mp + MW)Z)
[(t—t)(t—t )P

ImMy(t) > 3.1 3 [ (1))
et [(e—t)(e—t )t/
Imfo(t) > § 4gr +t73|f0(t)‘2
= L1 [ p(t. Q%)|F(1)]2dt < 1(Q?),  1(Q?) calculated from pQCD and OPE J
g

e Q2 sufficiently large for light mesons; Q* = 0 for heavy-heavy or heavy-light form factors

® more general relation: ft‘f pi,i(t, QZ)F,-(t)Fj*(t)dt < 1(Q?) (BD™) form factors)
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Comment: connection with stability of analytic continuation

Analyticity: its splendour and its dangers

Splendour: analytic continuation is unique )

Dangers: analytic continuation is unstable (ill posed problem in the Hadamard sense) J

e two analytic functions very close along a range I' may differ arbitrarily outside I
e determination of remote resonances from Breit-Wigner parametrizations!
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Comment: connection with stability of analytic continuation

Analyticity: its splendour and its dangers

Splendour: analytic continuation is unique )

Dangers: analytic continuation is unstable (ill posed problem in the Hadamard sense) J

e two analytic functions very close along a range I' may differ arbitrarily outside I
e determination of remote resonances from Breit-Wigner parametrizations!

Mathematical result (Tikhonov regularization): analytic continuation is stabilized if
the class of admissible functions forms a compact set  Ciulli et al (1975)

e Role of the stabilizing condition:
e Let C be a compact class of analytic functions

e If Fj(t) € C and supr |F1(t) — F2(t)| < ¢, then for t outside I the inequality
|Fi(t) — F2(t)] < M(e, t) holds, such that M(e, t) — O when € — 0
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Comment: connection with stability of analytic continuation

Analyticity: its splendour and its dangers

Splendour: analytic continuation is unique )

Dangers: analytic continuation is unstable (ill posed problem in the Hadamard sense) J

e two analytic functions very close along a range I' may differ arbitrarily outside I
e determination of remote resonances from Breit-Wigner parametrizations!

Mathematical result (Tikhonov regularization): analytic continuation is stabilized if
the class of admissible functions forms a compact set  Ciulli et al (1975)

e Role of the stabilizing condition:
e Let C be a compact class of analytic functions

e If Fj(t) € C and supr |F1(t) — F2(t)| < ¢, then for t outside I the inequality
|Fi(t) — F2(t)] < M(e, t) holds, such that M(e, t) — O when € — 0

Important remark:
® The inequality derived from Okubo’s approach defines a compact set in the
Hardy space H? of analytic functions with finite L2 norm on the boundary

= this ensures the stability of extrapolation to points inside the holomorphy
domain
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Consequences of the integral condition

Problem 1: From the L2-norm condition
(e o)
1 2
= tf p(t)|F(t)]2dt < I
Y

find constraints on the values of the values F(t,) and the derivatives F(¥)(t;) at some
real or complex points
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Consequences of the integral condition

Problem 1: From the L2-norm condition
fp BIF(e)2dt < I

find constraints on the values of the values F(t,) and the derivatives F(¥)(t;) at some
real or complex points

Write the problem in a canonical form:

e Conformal mapping of the t-plane cut for t > ty onto a unit disk by z = Z(¢t, tp),
with the inverse #(z, to)
=G -
Z(t, tp) = YA VI 2(to, to) = O

ty—to+/tr—t’

e Define an outer function w(z), i.e. analytic and without zeros in |z| < 1, with
modulus squared on |z| = 1 equal to p(t)|d%/dz|:

w(z) = exp [ £ [0 0 S22 Infp(E(e))|dE/ 2]

= the function g(z) = F(%(z, ty)) w(z) is analytic in |z| < 1 and satisfies the
inequality

L [ 1g(e®)do < 1
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Meiman problem (interpolation in L2 norm)

If g(z)analyticin |zl <1 and 5= f;” lg(e®)]2do < I J
1 d*g(z2) o
— =gk, 0<k<K-1, g(zn)=¢n, zn=2z;, 1<n<N
K dzk |,
B K—1 B K—1
I=1- g,%, fn:fn—zgkzﬁ
k=0 k=0

= positivity of the following determinant and of its minors:

1 & & &n
2 22K (2122)K (z1zn)K
! 1-— 22 1—2z120 1—z1zy

& (z2122) (2 (22X
11—z 1—222 1—zzy |20

= (mz)f (22zw) 7/

éN e 2
1—z1zy 1—2zzy 1— 2z,
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Alternative solution based on analytic interpolation theory

Convex domain in the space of parameters, defined by the quadratic inequality:

N K-1

N K—-1
D Amnbném+ Y Bixgigk +2> Y Cingbn < |
m,n=1 J k=0 n=1 k=0

e Blaschke factors:  |Bj(z)| =1 for |z| = 1 defined recurrently by

Bi(z) =1, Bu(z)= f_*j;:l B, 1(z), 2<n< N+1,
. ﬁ _ dK+I—k |: 1 :| v |: z— zp :|
K= (KHI=K)! gz K+1—k Bus1(z) 1:0’ n= By+1(z) a
Y,Y, 1 L
.A _ nfm - B _ i
mn Kznlg 1_ anm7 jk ;ﬁﬂﬁk!

-1
Yn Bxi
Cin = Z +1

Zn 1 Zp_k Zn
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Inclusion of the phase in the elastic region

Problem 2: From the conditions
oo
L [ p(t)|F(t)]?dt <1 and arg[F(t+ie)=0(t), ty <t< tp
ty

find constraints on the values of the derivatives F(k)(tj) and the values F(tn)
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Inclusion of the phase in the elastic region

Problem 2: From the conditions
f p(t)|F(t)]Pdt <1 and arg[F(t+ie)=4d(t), tr <t<tp

find constramts on the values of the derivatives F(k (tj) and the values F(t,)

Standard techniques of functional optimization = solution described by the inequality:

0.
N K—1 in
Z Arileetim = Z Bugigk +2 . > Cingbn+ = / dOA(O)V(6) < I
m,n=1 J,k=0 n=1 k=0 *Gin
o
A(0): the solution of a Fredholm integral equation
Oin a
e \(0) — % 9f dO' (0K (0,0") = V(6), elfin = 3(t;,, to)
— sin[(K—1/2)(0—0")—W(0)+W(6")]
¢ Ku(6,6/) = Sn[(0—67)/2]
e Y(0) and V(0): known functions depending linearly on the input values
i
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Modified analytic optimization problem

Problem 3: From the conditions

oo
1T p(e)[F(OPde< 1" and  arg[F(t +ie) = 8(t), & <t<t;
tin

find constraints on the derivatives F(K)(¢;) and the values F(t,)
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Modified analytic optimization problem

Problem 3: From the conditions

oo
1T p(e)[F(OPde< 1" and  arg[F(t +ie) = 8(t), & <t<t;
tin

find constraints on the derivatives F(K)(¢;) and the values F(t,)

I"” determined from Okubo's method and data below t;j,, or from data above t;,
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Modified analytic optimization problem

Problem 3: From the conditions

f p(B)|F(t)]Pdt < I’ and arg[F(t+ie)=06(t), t+ <t< t,
tm

find constraints on the derivatives F(K)(¢;) and the values F(t,)

I"” determined from Okubo's method and data below t;j,, or from data above t;,
Steps of the proof:

e Define the Omnés function (for t > t;,, 6(t) arbitrary smooth function):

oo /
O(t) = exp E / dtﬂ
T Je, t'(t' —t)
e Define the function h(t) by F(t) = O(t)h(t), with the properties:

e h(t) is real below t;,, i.e. is analytic in the t-plane cut only for t > tj,

.1 fp (&) 2Ih(t)[2d < I

= for h(t) we obtained Problem 1, with two modifications:

e the t-plane cut for t > t is replaced by the t-plane cut for t > tj,

o the weight p(t) is replaced by p(t)|O(t)|?
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Solution of Problem 3

e Conformal mapping of the t-plane cut for t > tj, onto the unit disc |z| < 1:

3(t, tg) = fin — 10— v t’"_t, 3(to, ) = 0
Viin—to+/tin — t

e Outer functions with modulus related to p(t) and |O(t)|:

w0, . B
w(z) = exp {%/0 do =70 i— - In[p(%(e™, to))|dt/dz\]}

\ tin t(z to) In|O(t)]
\/ — tin(t' — (2, 0))

w(z) = exp
= the function g(z) defined by:

g(2) = F(¥(z, 1)) [O(¥(z, 0))] ! w(2) w(2) )

is analytic in |z| < 1 and satisfies

1 27 .
— [ la(e)Pd0 < 1 J
™ Jo

= the standard Meiman problem
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Properties of the bounds

Rigorous properties:

e are independent of the conformal mapping (the parameter ty) and the arbitrary
phase §(t) for t > ti,

e remain the same if the < sign is replaced by the equality sign

e depend in a monotonous way on /: larger I, weaker constraints

Irinel Caprini, Bucharest
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Properties of the bounds

Rigorous properties:

e are independent of the conformal mapping (the parameter ty) and the arbitrary
phase §(t) for t > ti,

e remain the same if the < sign is replaced by the equality sign

e depend in a monotonous way on /: larger I, weaker constraints

Related problems: Nevanlinna-Pick and Schur-Carathéodory interpolation for bounded
functions

[[Flleee = sup [F(t)| </
t>ty

e The bounds in L%-norm are stronger than those based in L2-norm

e By varying p(t), we can approach the stronger bounds given by the L°°-norm

= hints for a suitable choice of p(t): compromise between

e choices leading to strong bounds

e need to exploit properly the available knowledge of the modulus

Irinel Caprini, Bucharest
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Particular consequence: domains without zeros

The formalism predicts domains in the t-plane where zeros are excluded

e Insert the assumption F(t:)=0 in the determinant along with other input values
e |f the consistency inequality is violated, the zero is excluded
= rigorous description of the domains where zeros are forbidden
o
e Example: given the input values F(0), F’(0) and F(t1), the domain of points
tc = t(zc, to) where zeros of F(t) are excluded is defined by the inequality
I-g5—gi —g—g1ze  glz) g - gz
i — %z (zez1)?
80— 814c 1-22 1—zcz <0
(2021)° ()
g(z1) —go — &121 1_0—1311 1_1212
o

The knowledge of zeros is important for testing symmetry properties and as input in
some dispersive representations
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Applications

@ Constraints on the low energy parameters and zeros

e BD®™) form factors (Isgur-Wise function) IC, Lellouch, Neubert (1998)

e K form factors Bourrely, IC (2005), Abbas, Ananthanarayan, IC, Imsong, Ramanan
(2010) (Anant’s talk)

e pion electromagnetic form factor IC (2000), Abbas, Anant, IC, Imsong (2011)
e D7 form factors Ananthanarayan, IC, Imsong (2011)

@® Extrapolations to intermediate spacelike energies

e onset of pQCD for the pion form factor Ananthanarayan, IC, Imsong (2012)

©® Bounds on the modulus on the timelike axis
e consistency checks on pion form factor data Ananthanarayan, IC, Das, Imsong
(work in progress)
@ Analytic parametrizations with unitarity constraints

e BD(™) form factors (Isgur-Wise function) 1C, Lellouch, Neubert (1998)
e B vector form factor Bourrely, IC, Lellouch (2009)

e D7 form factors, pion electromagnetic form factor (work in progress)
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Applications

@ Constraints on the low energy parameters and zeros

e BD®™) form factors (Isgur-Wise function) IC, Lellouch, Neubert (1998)

e K form factors Bourrely, IC (2005), Abbas, Ananthanarayan, IC, Imsong, Ramanan
(2010) (Anant’s talk)

e pion electromagnetic form factor IC (2000), Abbas, Anant, IC, Imsong (2011)
e D7 form factors Ananthanarayan, IC, Imsong (2011)

@® Extrapolations to intermediate spacelike energies

e onset of pQCD for the pion form factor Ananthanarayan, IC, Imsong (2012)

® Bounds on the modulus on the timelike axis
e consistency checks on pion form factor data Ananthanarayan, IC, Das, Imsong
(work in progress)
@ Analytic parametrizations with unitarity constraints

e BD(™) form factors (Isgur-Wise function) 1C, Lellouch, Neubert (1998)
e B vector form factor Bourrely, IC, Lellouch (2009)

e D7 form factors, pion electromagnetic form factor (work in progress)

Historical review and references in: G. Abbas, B. Ananthanarayan, IC, I.S. Imsong and S.
Ramanan, Eur. Phys. J. A 45, 389 (2010), arXiv:1004.4257 [hep-ph] J
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Ananthanarayan, IC, Imsong, EPJ A 47, 147 (2011)
Of interest for the determination of the element |V 4| of the CKM matrix

Input:

Application |: Low energy constraints on the D7 weak form factors

e f1(0) = 0.67 £0.10, from LCSR Khodjamirian et al (2009) and lattice HPQCD (2011)
e |ow-energy soft-pion theorem (Callan-Treiman): fo(ME) — M2) = fp/fr

Dominguez et al (1990)

e phase at low energies from dominant resonances D* and Dy

e Okubo's approach: derivatives xi") of a polarization function at Q%2 =0

LA @I(0)Pde <X, k=+,0
x = xMPT 1 (NP, 5QCD to two loops Chetyrkin et al (2001)
o (:)PT X(:)NF’ X(:) Xén)F’T Xén)NP Xgn)
0 0.0170744 -0.0010543 0.0160201 0.0045547  0.0002723  0.0048270
1 00019357 -0.0002723 00016634 0.0004118 00000704  0.0004821
2 0.0000706

0.0002586  -0.0000704  0.0001883  0.0000524  0.0000182
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Application |: Low energy constraints on the D7 weak form factors

Ananthanarayan, IC, Imsong, EPJ A 47, 147 (2011)
Of interest for the determination of the element |V 4| of the CKM matrix

Input:

e f1(0) = 0.67 £0.10, from LCSR Khodjamirian et al (2009) and lattice HPQCD (2011)

e |ow-energy soft-pion theorem (Callan-Treiman): fo(ME) — M2) = fp/fr

Dominguez et al (1990)

e phase at low energies from dominant resonances D* and Dy

e Okubo's approach: derivatives xi") of a polarization function at Q%2 =0

1
Lo Polf(0)Pdt <X, k=+,0
x = xMPT 1 (NP, 5QCD to two loops Chetyrkin et al (2001)
o X(:)PT X(:)NF’ X(:) Xén)F’T Xén)NP Xgn)
0 0.0170744 -0.0010543 0.0160201 0.0045547  0.0002723  0.0048270
1 00019357 -0.0002723 00016634 0.0004118 00000704  0.0004821
2 00002586 -0.0000704  0.0001883 0.0000524  0.0000182  0.0000706

Taylor expansion at t = 0:

f(®) = 0 (T4 Mg + 3N+ ) k=+0

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012




D7 form fa

ts on slope and curvature

(0)

Scalar form factor, moment X0

— standard bound

—— standard bound + CT
—. phase +CT

-~ pole fit

N

2k J
o
S
= OF b
o
~<
2k 4
4 J
n 1 n 1 n 1 n 1 n 1
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D7 form fac

Scalar form factor, moment X0

— standard bound T T T 3 T T T T T T ©
4|7~ standard bound + €T = Xo
~ phase +CT @
& pole fit 2 [t X
@
Xo
2 1 = pole fit
I’ 'S
o o 0OF -
- —
x OF x
e se .t 4
2 26 phaseecr . h
4t 3 N
N T ! N | N ! N ! 4 ! ! ! ! L
-0.8 -0.4 0 0.4 0.8 0.2 0.4 0.6 0.8 1
Ax 107 Apx 107

s: constraints on slope an

(0)

urvature

Constraints from various moments

Intersection = small allowed domain

e Pole ansatz from Becirevic, Kaidalov (1999) excluded by imposing all the constraints
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D7 form factor: domains where zeros are excluded

(0

Vector form factor, moment Xi

T T T T
a4k i
ok i
2of :
2k i
al i

1 1 I 1 1

6 4 -2 0 2

Ret
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D7 form factor: domains where zeros are excluded

0 0
Vector form factor, moment Xg ) Scalar form factor, moment XE) )
= larger region using CT theorem
T T T T
T T
ar 1 1oF —
oL J
EoF 1 E of g
ok J
4 B -10F 4
1 1 1 1 1 Il 1 L 1
6 4 2 0 2 15 10 5 0 5
Ret Ret
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Application |: Low-energy constraints on the pion form factor

Ananthanarayan, IC, Imsong, Phys Rev D83, 096002 (2011)
Input:

e §(t) = 61(t) for t < ti = (Mr + M.,)? = (0.917 GeV)? from Roy equations for
7w amplitude Ananthanarayan et al (2001), Garcia-Martin et al (2011)

e Recent measurements of the modulus up to high energies BaBar (2009)

® Precise measurements at spacelike points Horn et al (2008), Huber et al (2008)

t  Value [GeV?] F(t)
t —1.60 0.243 £ 0.0121% %%
t —2.45 0.167 £ 0.01075,%3

—0.007
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Application |: Low-energy constraints on the pion form factor

Ananthanarayan, IC, Imsong, Phys Rev D83, 096002 (2011)
Input:
e §(t) = 61(t) for t < ti = (Mr + M.,)? = (0.917 GeV)? from Roy equations for
7w amplitude Ananthanarayan et al (2001), Garcia-Martin et al (2011)

e Recent measurements of the modulus up to high energies BaBar (2009)
® Precise measurements at spacelike points Horn et al (2008), Huber et al (2008)

t  Value [GeV?] F(t)
t —1.60 0.243 £ 0.0121% %%
0 013
t —2.45 0.167 £ 0.01075%
V.

Best results obtained from Problem 3: ‘rlr I p()|F(t))2dt < 1/

Example: suitable choice of p(t):

M ()3 1 (1—u)u?
e p(t) = pu(t) = - /2 K(t)v K(t) = fo du T—utM2 2/t
I

e //=357"=2217x 107" Davier et al (2010), Malaescu (private communication)

Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012
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Application |: Low-energy constraints on the pion form factor

Ananthanarayan, IC, Imsong, Phys Rev D83, 096002 (2011)
Input:
e §(t) = 61(t) for t < ti = (Mr + M.,)? = (0.917 GeV)? from Roy equations for
7w amplitude Ananthanarayan et al (2001), Garcia-Martin et al (2011)

e Recent measurements of the modulus up to high energies BaBar (2009)
® Precise measurements at spacelike points Horn et al (2008), Huber et al (2008)

t  Value [GeV?] F(t)
t —1.60 0.243 £ 0.0121% %%
0 013
t —2.45 0.167 £ 0.01075%
V.

Best results obtained from Problem 3: ‘rlr I p()|F(t))2dt < 1/

Example: suitable choice of p(t):

M ()3 1 (1—u)u?
e p(t) = pu(t) = - /2 K(t)v K(t) = fo du T—utM2 2/t
I

e //=357"=2217x 107" Davier et al (2010), Malaescu (private communication)

Taylor expansion: F(ty=1+ Y2 t+ct? +d2 +---

(r?) = 0.43 £ 0.01 fm?

Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012
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Low-energy constraints: allowed domain in the c-d plane

d[cev?

36 37 3.8 39 a4
clGev?]

Irinel Caprini, Bucharest
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ints: allowed domain in the c-d plane

| = no spacelike datum T
— F(t,) (cent)
— F(t) (max)
— F(t,) (min)
101 g
4 <
3
)
© L
<r’>=043fm"
i 95
| | | | |
35 36 37 38 39 4 35 36 Ex 38 39
c[Gev) c[Gev]
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Low-energy constraints: allowed domain in the c-d

= no spacelike datum T
— F(t) (cent)
— F(t,) (max)
— F(t,) (min)

10

d[cev?

L L L L 1 1 | I I
35 36 37 38 39 4

clGev?]
By varying all the input parameters, (r2), F(tl),éL”r,é%(t):

3.75 GeV™* < ¢ <3.98 GeV™4,  0.91 GeV® <d <10.46 GeV°

with a strong correlation between the values of ¢ and d

Irinel Caprini, Bucharest
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Pion form factor: domains without zeros

(r2) = 0.43 £ 0.01fm? and F(t1) = 0.234f%"%21i = simple zeros on the real axis are
excluded in the range —4.46 GeV? < ty < 0.84 GeV?

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Pion form factor: domains without zeros

0.014

(r2) = 0.43 £ 0.01fm? and F(t;) = 0.23472022 — simple zeros on the real axis are
excluded in the range —4.46 GeV? < ty < 0.84 GeV?

Complex zeros, no spacelike input
(r2) = 0.43 fm? (smaller domain)

(r2) = 0.44 fm? (bigger domain)

Im t
o
T
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Pion form factor: domains without zeros

0.014

(r2) = 0.43 £ 0.01fm? and F(t;) = 0.23472022 — simple zeros on the real axis are
excluded in the range —4.46 GeV? < ty < 0.84 GeV?

Complex zeros, no spacelike input Complex zeros, with spacelike input:
(r2) = 0.43 fm? (smaller domain) F(t1) = 0.234, (r2) = 0.43 fm?
(r2) = 0.44 fm? (bigger domain)

Im t
o

T

1
Imt
o

T

1
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Application Il: Bounds on the pion form factor on the spacelike axis

Ananthanarayan, IC, Imsong, Phys Rev D85, 096006 (2012)

Input:
e F(0)=1, (r2)=0.43+£0.01fm?, F(—2.45GeV?)=0.167 +0.0107%%
o arg[F(t + ie)] = 61 (¢), AM2 <t < tp, tip= (Mo + Mz)?

o0
o % J p(t)|F(t)|>dt < I', for suitable choices of the weight p(t)

tin

Direct evaluation of /’:

e BaBar data Aubert et al (2009) up to 3 GeV

® very conservative estimate above 3 GeV, imposing the decrease |F(t)| ~ 1/t
above 20 GeV

= small sensitivity to the high-energy assumptions for weights that decrease as
1/+/t or faster

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Application Il: Bounds on the pion form factor on the spacelike axis

Ananthanarayan, IC, Imsong, Phys Rev D85, 096006 (2012)

Input:

e F(0)=1, (r2)=0.43+£0.01fm?, F(—2.45GeV?)=0.167 +0.0107%%

o arg[F(t + ie)] = 61 (¢), AM2 <t < tp, tip= (Mo + Mz)?

o0
o L [ p(t)|F(t)]2dt < I’, for suitable choices of the weight p(t)

™
tin

Direct evaluation of /’:

e BaBar data Aubert et al (2009) up to 3 GeV

® very conservative estimate above 3 GeV, imposing the decrease |F(t)| ~ 1/t
above 20 GeV

= small sensitivity to the high-energy assumptions for weights that decrease as
1/+/t or faster

p(t) I’

1 1.788 £ 0.039
1/V/t 0.687 4 0.028
1/t 0.578 4 0.022
1/t2 0.523 4+ 0.017
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ice of the best weig

p(t) = 1/+/t, inclusion of F(t;)

1 without spacelike datum] | T T
with spacelike datum

0.8 B
<
D 0.6[ 4
S
—
Q 04t
i
o
o

0.2




Choice of the best weig

p(t) = 1/+/t, inclusion of F(t2) Comparison of various weights
1= without spacelike datum] | T T —1 T T T
—— with spacelike datum -
Q T
0.8 m w
o T T - 3
Ly e
5 >
0.6 B o
8 8
) 0.4 A i o -10pt i
g T e B oE sl
"‘ S~ -4 o
© 0.2k T i [S F1N -
T 200,/ - q
L -
0 L L L . ] o o3 ! E—r ) )
2 4 6 8 10 5 10 15 20
Q’[GeV]] Q’[GeV]]

e weights that decrease too fast have a weak constraining power at large energies

e the weight related to the standard Okubo approach and p,, which decrease
like 1/t2, are not useful for extrapolation to large Q2

e weights that decrease too slowly are sensitive to the asymptotic tail

= suitable choice: p(t) = 1/t

i, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Effect of the uncertainty of the input

Including the errors:

e vary separately each input and combine the resulting errors in quadrature

e vary simultaneously all the input quantities inside their error intervals

= lead to comparable results

Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Effect of the uncertainty of the input

Including the errors:

e vary separately each input and combine the resulting errors in quadrature
e vary simultaneously all the input quantities inside their error intervals

= lead to comparable results

0.6 ——

Q°F(-Q%) [GeV]
o o
2 2
T T

o
T

02 L L | L

4 6
Q’[Gev]]

Vit

e white band: allowed domain for central values of the input variables

Bounds for the optimal choice p =

e grey bands: enlarged domain when the input is varied inside the error bars
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Comparison with experimental data

Low energy data

T T T T T
]
8 4
—
4
= 4
o
© ¥
01F_ B
1 1 1 1 1
% 05 T 2 25 3

15
Q’ [Gev]

e A few points (Amendolia, Bebek) in conflict with the bounds
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mparison with experimental data

Low energy data High energy data
OS5 mmme] ~ T T T T T T T T 0o T T T
I o «  Ackermann
e o] o g
e 1 T Bown
o v 11 — 06| Hom
3 E T * Voimer
o o £ 1 8
~ L £ 045 T 4
o 3 @ JiT
qE02F B I 03 g? s
J o
o =
° i
0.15[=% A
0.1+ B
J b
t ok ]
0. 1 L 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 0 2 4 5 8 10
Q’[GeV?] Q*[cev?]

e A few points (Amendolia, Bebek) in conflict with the bounds




Comparison with pQCD and nonperturbative theoretical models

8 f2 s 2
FiE(- @) = et

8f2a2(u?) 2
FAEQ(-Q2) = Y5l [ (1n 12 4 1) — 3.00]
The asymptotic regime is known to set in quite slowly

e Various nonperturbative models for the intermediate regions

e Definite conclusions difficult due to lack of data at high energy

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Comparison with pQCD and nonperturbative theoretical models

8 f2 s 2
FiE(- @) = et

8f2a2(u?) 2
FAEQ(-Q2) = Y5l [ (1n 12 4 1) — 3.00]
The asymptotic regime is known to set in quite slowly

e Various nonperturbative models for the intermediate regions

e Definite conclusions difficult due to lack of data at high energy
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Application Ill: Bounds on the pion form factor in the timelike region

Ananthanarayan, IC, Das, Imsong, preliminary results

e The formalism applied up to now (Problem 3) does not use as input data on the
modulus |F(t)| for t < tj,

e On the other hand, the formalism allows to find bounds on this quantity

e The function

g(z) = F((z, 1)) [O(¥(z, )] " w(z) w(z)
is analytic and real for t < t;,

e Derive upper and lower bounds on g(z) from Meiman condition

e They lead to bounds on the modulus F(t), calculated as

| g(2(t, t))
w(Z(to, t))

. t S o(t")
0(2)] = exp (nPV/t+ dtt/(t/_t)>

|F(t)] = |O(¢)

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012




Bounds on the pion form factor in the timelike region

Isospin breaking by w-p interference in e e~ annihilation:

et

83(t) = o1(t) + arg {1 + } , ot =(My —i/2Tw)?, e~1.9x1073

w

Leutwyler (2002), Hanhart (2012)
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Bounds on the pion form factor in the timelike region

Isospin breaking by w-p interference in e™ annihilation:

- o t . _
83(t) = o1(t) + arg {Hﬁ}, ty = (Mo —i/2T0)?, e~1.9x1073
o

Leutwyler (2002), Hanhart (2012)
Methods of including the uncertainties:

e vary separately each input and combine the errors in quadrature

e vary simultaneously all the input variables inside their error intervals

T
—— central inputs

——— errors method_1 A
40| - errors method_2
30+
N
g
20 o(t) = 1t
10
n | | | .
03 0.4 0.5 0.6 0.7 08 0.9
12
t [GeV]

Bucharest
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Bounds on the pion form factor in the timelike region

Isospin breaking by w-p interference in e e~ annihilation:

w

- o t . _
o%(t)éo%(t)+arg{1+t67t}, ty = (My — i/2T0)?, e~1.9x1073

Leutwyler (2002), Hanhart (2012)

50, T T T T T — - — T T T
p(t) =11t 50 p(t) = 11, isospin breaking
« Belle 1 +  BaBaR
20F - i . CcMD-2 gﬁ
0 KLOE £ 4
[ L 1 7
30 FP
L - F:
S “s30r LA
T | £ % 1 g 2 *
201 ] 20 # %
4 F: %
[ P " & 5
. Z 5
10+ p N 10+ “(f‘éf 5
r U 1 S
a1 1 1 L 1 s 1 1 L 1
93 0.4 05 0.6 0.7 0.8 0.9 93 0.4 05 06 0.7 0.8 0.9
1/2 12
t° [GeV] 7" [GeV]

® accurate recent data: Belle (2008), BaBar (2009), KLOE (2011), CMD-2 (2007)
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Bounds on the pion form factor in the timelike region

Isospin breaking by w-p interference in e e~ annihilation:

et

to — t

83(t) = o1(t) + arg {1 + } , ot =(My —i/2Tw)?, e~1.9x1073

Leutwyler (2002), Hanhart (2012)

p(t) = 1/t, isospin breaking T
* BaBaR A
3.5 KLOE L
T 4
L
3 3 -
o i
Zo25 i & x b
€T [
, i 1
L
1S
15 =1 ]
& 3 0.§35 0{4 0. 25 0.5
2 [Gev]

e The bounds describe more precisely the modulus at low energies than the data

e A few experimental points (BaBar) in conflict with the bounds

Irinel Caprini, Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Application IV: Parametrization of the B7 vector form factor

Bourrely, IC, Lellouch, arXiv:0807.2772, Phys Rev D79, 013008 (2009)
Of interest for the determination of the element |V, of the CKM matrix

dr — = GQ‘Vub‘z
—(B® = n"17iy) = L5 N3 i (q)

3
dq? 19273 my},
Physical range of semileptonic decays: 0 < ¢° < t_ = (mgo — m_+ )2 = 26.42 GeV?

Basic properties:

e f1(q?) analytic in the g?-plane cut for g% > ti, with t; = (mgo + m,.+)? except
for a pole at g% = M3,

e Threshold behaviour: Im fi(g?) ~ (g% — t4)3/2
oo

e Unitarity constraint (Okubo): 1 f p(t)|fr(£)]2dt < x;1-(0)
ty

T (0) = 3[1+ 114 as(mp)]  mp(au)  (@sG?) BT s ST
! 32m2m? md 12m®

Generalis (1990), Lellouch (1996), Arnesen et al (2005)

Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012
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New parametrization of £, (g?)

k
f by (t =K = % = 3(¢% ¢
L (e7) = qz/m*zk(o)[ — =g (. 0)
ot
K
Unitarity constraint: Z Bjk(to)bj(to)bk(to) <1
J k=0
to(GeV?) Boo Bo: Bo2 Bog Bog Bos
0 0.0197 -0.0049 -0.0108 0.0057 0.0006 -0.0005
topt 0.0197 0.0042 -0.0109 -0.0059 -0.0002 0.0012
t_ 0.0197 0.0118 -0.0015 -0.0078 -0.0077 -0.0053
Bj(ji+k) = Bok»  Bjk = By
-
Optimal choice of ty:
topt = (Mg + mx)(y/Mg — /Mx)? = 20.062 GeV? N
Eqs | 05 0 05 1s
Rez
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Fit of theoretical and experimental data

Theoretical and experimental input:

e f(0) = 0.26 & 0.03, from LCSR Khodjamirian et al (1007, Ball (2007)
e lattice calculations at eight g?-points FNAL-MILC and HPQCD

e experimental data on the partial branching fractions over bins in g2 BaBar, Belle,
CLEO
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Fit of theoretical and experimental data

Theoretical and experimental input:

e f(0) = 0.26 & 0.03, from LCSR Khodjamirian et al (1007, Ball (2007)
e lattice calculations at eight g?-points FNAL-MILC and HPQCD

e experimental data on the partial branching fractions over bins in g2 BaBar, Belle,
CLEO

Combined fit of experimental and theoretical points, with unitarity constraint:

K
L(bj, [Vas]) = x2(bj, Vus) + A [ S Biubjbe — 1
J k=0
Xz(blm |VubD = X%h + Xixp

= 177~ f(@IGI — Fe(@]+ (7 (0) — frosn)/(Ofcsn)?

22 . _ .
Xew = 3 1B} - Bi(£:)]Cg 3 [Bi — Bi(f+)]
i
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Systematic error and fitting strategy

Systematic error:

e In this approach the systematic error is the truncation error of the expansion

e Due to the unitarity constraint, the higher order coefficients cannot grow
arbitrarily =- the truncation error can be controlled

e let b2 be the maximum value of |bk+1|, allowed by the unitarity
constraint, for fixed values of by, k < K, obtained from the fit

bREY 129

e realistic prescription for the error: §fi(q?)syst = —
1—q?/mg.
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Systematic error and fitting strategy

Systematic error:

e In this approach the systematic error is the truncation error of the expansion

e Due to the unitarity constraint, the higher order coefficients cannot grow
arbitrarily =- the truncation error can be controlled

e let b2 be the maximum value of |bk+1|, allowed by the unitarity
constraint, for fixed values of by, k < K, obtained from the fit

bREY 129

e realistic prescription for the error: §fi(q?)syst = >
1—q?/mg.

Fitting strategy:

Increase the number of parameters until the systematic error becomes negligible
compared to the statistical error along the whole semileptonic region

Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



Optimal fit

7 0 1 2 3
b, 042F003 —047£013 02FX1.3 —08L41

Also: |V,| = (3.54 £ 0.30) x 103 (remarkably close to expectations from global CKM fits)

total LCSR LQCD Belle CLEO Babar-t BaBar-u
Naata 31 1 315 3 3 3 12
x> 21.0 0 5.1 0.0 2.8 43 8.7
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Optimal fit

7 0 1 2 3
b, 042F003 —047£013 02FX1.3 —08L41

Also: |V,| = (3.54 £ 0.30) x 103 (remarkably close to expectations from global CKM fits)

total LCSR LQCD Belle CLEO Babar-t BaBar-u

Ngata 31 T 315 3 3 3 12
x> 21.0 0 5.1 0.0 2.8 43 8.7
L L L L A B ]
10 . LCSR u 0.7+ f:
sl e FNAL-MILC ~ 060 5
= HPQCD g 1
“o 05 1
o 1
S o4t ]
“_+ 4
03 1
O’) L L L L L :
) 10 15 20 25
o [Gev?)

® Errors found by standard sz analysis, not the linear approximation in the error propagation
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Summary and conclusions

e The availability of a reliable bound on an integral involving the square of the
modulus of a form factor on the unitarity cut allows one to:

e constrain the form factor shape parameters at low energy
e jsolate domains in the complex plane where zeros are excluded

e find bounds at intermediate spacelike regions and test the onset of
perturbative QCD

e control the truncation error of analytic parametrizations

e The knowledge of the phase along a part of the unitarity cut considerably
improves the results

e Precise values at points inside the analyticity domain (from ChPT, lattice,
experiment) crucial for improving the predictions

Bucharest Chiral Dynamics 2012, Jefferson Laboratory, 7 August 2012



	

