## Ab-initio computation of hot and dense strongly interacting matter

Swagato Mukherjee



July 2012, Washington DC

## Heavy ion collision experiments and Lattice QCD

**HIC: RHIC, LHC** a new state of matter: QGP?



**\*** transition temperature  $\star$  critical energy density ★ nature of QCD transition

**Electomagnetic probes** hotness of QGP?



★ photon, dilepton rate **\*** electrical conductivity

#### Hydrodynamic flow QGP a perfect liquid ?



★ equation of state **\*** shear, bulk viscosity

Heavy quark probes QGP melts Quarkonia ?



## Heavy ion collision experiments and Lattice QCD

### **RHIC Beam Energy Scan**



#### CBM@FAIR



#### **Properties of dense QCD** *QCD critical point ?*



- **\*** transition temperature
- \* charge fluctuations & freeze-out condition
- ★ equation of state
- ★ (non-)existence of QCD critical point

## Heavy ion collision experiments and Lattice QCD

### **RHIC Beam Energy Scan**



#### **Properties of dense QCD** *QCD critical point ?*



- **\*** transition temperature
- **\*** charge fluctuations & freeze-out condition
- ★ equation of state
- ★ (non-)existence of QCD critical point

computational resources needed to address all these issues ?

#### CBM@FAIR



## Transition temperature and nature of QCD transition



#### chiral fermion: Domain Wall Fermions

#### suitable hardware type: BlueGene/Q



#### Sequoia @ LLNL



QCDCQ @ BNL



JuQeen @ Juelich



Mira @ ANL

## Domain Wall Fermions on BlueGene/Q



### 532 Tflop/s, 8K nodes

hotQCD

#### early science time



Sequoia @ LLNL



#### 3 Pflop/s sustained: 32% of peak

48 racks: 50% of machine lattice size:  $128^3 \times 96 \times 16$ 

Courtesy: P. Boyle, Lattice 2012 & LGT group, LLNL

code development: C. Jung et.al., SciDAC-2/3, USQCD

software suite: Columbia Physics System (CPS)

## Transport coefficients, di-lepton rates, heavy quark, EOS ...



10x tera 100x tera peta 10x peta 100x peta exaflop year sustained

## ... on BlueGene/Q



(multi-grid inverter)

code development: J. Osborn, SciDAC-2/3, USQCD

software suites: MILC, Multi-Grid Inverter, ...



Mira @ ANL

Courtesy: J. Osborn, ANL



## Properties of dense QCD





Titan @ ORNL



Edge @ LLNL



GPU-cluster @ Bielefeld

## Dense QCD on graphics cards





GPU-cluster @ Bielefeld

thermodynamics is among the top 3 GPU users of US LQCD community

#### 125 Gflops/GPU

# massive parallelizations possible without sacrificing performance

Courtesy: LGT group, Bielefeld

- computations completely dominated by fermion matrix inversions
- even the ultra-fine lattices fit into single GPU
- requires ~15K inversions on each gauge field configuration
- ideally suited for large scale GPU based architectures

code development: M. Wagner & C. Schmidt, Bielefeld

software suite: Bielefeld code

## Summary

## require both BlueGene/Q type and GPU based machines based on our present performances we can achieve ...



#### ... if we continue to get adequate support

assuming computing increases x10 each 5 year