

Hadron properties from Dyson-Schwinger equations

Gernot Eichmann JLU Giessen

Workshop on Confinement Physics JLab, USA March 13, 2012

Hadron physics from QCD

Hadron spectroscopy:

strangeness & charm, glueballs, exotics, multiquark states, nucleon resonances

Hadron structure:

elastic & transition form factors, spin & OAM, GPDs, factorization & perturbative QCD

Goal: computation of hadron properties from quark & gluon substructure in QCD.

Dyson-Schwinger approach:

From QCD Green functions to hadron wave functions, form factors and reactions.

Ab-initio, nonperturbative, covariant, continuum, light and heavy quarks. But: truncations!

(from PANDA Physics Book)

Dyson-Schwinger equations

QCD Lagrangian:

quarks, qluons (+ qhosts)

$$\mathcal{L}_{QCD} = \overline{\psi}(x) \left\{ \gamma_{\mu} \left(\partial_{\mu} + i A_{\mu}(x) \right) + m \right\} \psi(x) + \frac{1}{4} F_{\mu\nu} F_{\mu\nu}$$

QCD & hadron properties are encoded in QCD's Green functions.

Their quantum equations of motion are the **DSEs**:

Quark propagator:

· Quark-gluon vertex:

• Gluon propagator:

ത്തു

Gluon selfinteractions, ghosts,...

Dyson-Schwinger equations

QCD Lagrangian:

quarks, qluons (+ qhosts)

$$\mathcal{L}_{QCD} = \overline{\psi}(x) \left\{ \gamma_{\mu} \left(\partial_{\mu} + iA_{\mu}(x) \right) + m \right\} \psi(x) + \frac{1}{4} F_{\mu\nu} F_{\mu\nu}$$

QCD & hadron properties are encoded in QCD's Green functions. Their quantum equations of motion are the **DSEs**:

Quark propagator:

· Quark-gluon vertex:

Gluon propagator:

· Gluon selfinteractions. ghosts,...

Relevant physics in small subset ⇒

Truncation:

closed system, solvable

All momentum scales:

perturbative & non-perturbative QCD, factorization not required

All quark masses: also chiral limit

Applications:

- Hadron properties
- QCD phase diagram
- · Origin of confinement

Dynamical quark mass

- Dynamical chiral symmetry breaking: explains dynamical generation of "constituent-quark masses"
- Realized in quark Dyson-Schwinger eq: momentum-dependent quark mass M(p²)

• Mass generation for light hadrons

Hadrons

Hadron wave functions encoded in quark T-matrices:

Meson poles at $P^2 = -m_i^2$

Baryon poles at $P^2 = -M_i^2$

Hadron form factors, scattering amplitudes, structure properties:

Covariant **bound-state equations** determine hadron **masses** and wave functions:

⇒ Bethe-Salpeter equation:

⇒ Faddeev equation:

Hadrons

Covariant **bound-state equations**determine hadron **masses** and wave functions:

E.g. "rainbow-ladder" truncation: iterated dressed gluon exchange

- GMOR, em. current conservation,
 Goldberger-Treiman at hadron level
- no pion-cloud effects ("quark core"), no decay channels $(\rho \rightarrow \pi\pi, \Delta \rightarrow N\pi, ...)$

Hadrons

Everything else is determined self-consistently, no further approximations or model ansätze

- quark propagator is DSE solution (rainbow-ladder: complex conjugate poles)
- quark-antiquark vertices are BSE solutions, develop meson poles (no widths though)
- full covariant spin-color-flavor structure of hadron wave functions implemented

E.g. "rainbow-ladder" truncation: iterated dressed gluon exchange

- GMOR, em. current conservation,
 Goldberger-Treiman at hadron level
- no pion-cloud effects ("quark core"), no decay channels $(\rho \rightarrow \pi\pi, \Delta \rightarrow N\pi, ...)$

Mesons

- Heavy ground-state mesons √ Blank, Krassnigg: PRD 84 (2011)
- Heavy-light mesons
 Nguyen, Souchlas, Tandy, AIP Conf. Procs 1361 (2011)
- Light mesons: s waves (RL) √ Maris, Roberts, Tandy, PLB420 (1998),... p waves (beyond RL) √ Fischer, Williams, PRL 103 (2009) Chang, Roberts, PRL 103 (2009)
- Light isoscalars:
 η, η' (beyond RL) √
 Alkofer, Fischer, Williams, EPJ A38 (2008)
- Light scalars (σ meson)
 Tetraquarks?
 Heupel, Eichmann, Fischer, in preparation

Blank, Krassnigg: PRD 84 (2011)

Covariant Faddeev equation

Quark-quark correlations

as dominant structure in baryons

Solved for full Poincaré-covariant wave function:

Nucleon:

Eichmann, Alkofer, Krassnigg, Nicmorus: Phys. Rev. Lett. 104 (2010)

Delta:

Sanchis-Alepuz, Eichmann, Villalba-Chavez, Alkofer: PRD 84 (2011)

Hadron masses

Description of mesons and baryons from a single interaction kernel, only "active" input parameter is a scale

- Dynamical chiral symmetry breaking: mass generation for guarks & hadrons
- Poincaré covariance: quark orbital angular momentum in wave functions (p waves!)
- Diquark clustering in baryons: similar results in quark-diquark model Oettel, Alkofer, von Smekal, EPJ A8 (2000) Eichmann et al.: PRC 79 (2009)

Delta mass:

Sanchis-Alepuz et al., PRD 84 (2011)

Nucleon mass:

Eichmann et al., PRL 104 (2010) Eichmann, PRD 84 (2011)

o−meson mass:

Maris, Tandy, PRC 60 (1999)

Microscopic expression for a baryon's **non-perturbative current**: Eichmann, PRD 84 (2011)

Baryon form factors inherit properties of (pseudoscalar, vector, axial-vector) quark-antiquark vertices:

- Meson bound-state poles: origin of "vector-meson dominance"
- Em. current conservation,
 Goldberger-Treiman relation
 automatically satisfied

Meson poles at timelike Q^2 in T-matrix must also appear in vertex, timelike Q^2 structure in form factors

 FFs dominated by timelike meson poles electromagnetic: ρ, axial: a₁, etc.

- FFs dominated by timelike meson poles electromagnetic: ρ, axial: a₁, etc.
- FFs(Q²/M²) roughly current-mass independent same physics: mostly s wave, p waves fall off slowly, no chiral singularities, no pion cloud: "quark core"

$m_{\pi} [\mathrm{GeV}]$			
s-wave	0.66	0.67	0.69
p-wave	0.33	0.32	0.30
d-wave	0.01	0.01	0.01

TABLE I: s-, p- and d-wave contributions to the nucleon's canonical normalization at three pion masses, expressed as fractions of 1. The first column corresponds to the physical u/d-quark mass.

Electromagnetic structure

Nucleon em. FFs

vs. momentum transfer Eichmann, PRD 84 (2011)

- Good agreement with recent data at large Q²
- Good agreement with lattice at large quark masses
- Missing pion cloud below ~2 GeV², in chiral region
- ⇒ nucleon quark core without pion effects!

Electromagnetic structure

Nucleon charge radii:

isovector (p-n) Dirac (F1) radius

• Pion-cloud effects missing in chiral region (⇒ divergence!), agreement with lattice at larger quark masses.

Nucleon magnetic moments:

isovector (p-n), isoscalar (p+n)

• But: pion-cloud cancels in $\kappa^s \Leftrightarrow$ quark core

Exp:
$$\kappa^s = -0.12$$

Calc: $\kappa^s = -0.12(1)$

Large Q^2

- Faddeev result consistent with data:
 OAM in nucleon amplitude!
- Soon: investigate two-photon effects

Electric proton form factor

at large momenta Eichmann, PRD 84 (2011)

 Rosenbluth method suggested G_E/G_M = const., in agreement with perturbative scaling

Polarization experiments at JLAB showed falloff in G_E/G_M , with possible zero crossing

 Difference likely due to two-photon corrections
 Guichon, Vanderhaeghen, PRL 91 (2003)

Axial structure

Nucleon axial and pseudoscalar form factors

Eichmann & Fischer, 1111.2614 [hep-ph]

- Pion-cloud corrections? also missed on the lattice if volumes too small
- Timelike meson poles from quark-antiquark vertices: a_1 (1260) in G_A , π (138), π (1300) in G_P , $G_{\pi NN}$
- Goldberger-Treiman relation reproduced for all quark masses:

$$G_A(0) = \frac{f_\pi}{M_N} G_{\pi NN}(0)$$

Nucleon- Δ - γ transition

- Magnetic dipole transition (G_M*) dominant: quark spin flip (s wave).
- Electric & Coulomb quadrupole transitions small & negative, encode deformation.

Quark model: need **d waves** or **pion cloud**. Perturbative QCD: $R_{EM} \rightarrow 1$, $R_{SM} \rightarrow \text{const}$.

• Faddeev calculation (here: quark-diquark) Eichmann & Nicmorus, 1112.2232 [hep-ph]

Ratios reproduced even without pion cloud?!

Nucleon- Δ - γ transition

 R_{EM} dominated by **p waves!**

Poincaré covariance essential:

Quark OAM in N and Δ wave functions, p waves much more important than d waves.

Nucleon- Δ - γ transition

Magnetic dipole form factor: similar to quark model, "core + 25% pion cloud"

Flat current-mass dependence (in contrast to ChPT!):

$N\Delta\pi$ transition

- Delta decay width = $g_{\Delta N\pi}$ × phase space (=118 MeV at u/d mass); current-mass dependence governed by phase space.
- $G_{\Delta N\pi}$ determined by pseudoscalar vertex \Rightarrow pseudoscalar meson poles: $\pi(1300)$, ...

Hadron scattering

Nonperturbative description of hadron-photon and hadron-meson scattering Eichmann & Fischer, PRD 85 (2012)

Compton scattering, DVCS, 2y physics

 $\bar{p}p \rightarrow \gamma \gamma^*$ annihilation

Meson photo- and electroproduction

Meson production

Nucleon-pion scattering

Pion Compton scattering

Fully non-perturbative, no factorization into soft and hard physics required!

Hadron scattering

Nonperturbative description of hadron-photon and hadron-meson scattering Eichmann & Fischer, PRD 85 (2012)

 π, ρ, \dots

- Perturbative subprocesses included, s- and t-channel poles from QCD
- Two-photon physics, offshell effects, GPDs in the Dyson-Schwinger approach
- Obstacles: quality of truncations; kinematically accessible regions

Light scalar mesons (0⁺⁺) don't fit into the conventional meson spectrum:

$$a_0$$
 (980 MeV) σ (440 MeV) $u\overline{u}, d\overline{d}, u\overline{d}$ $u\overline{u}, d\overline{s}$ $u\overline{u}, d\overline{s}$ $u\overline{s}, d\overline{s}$

- Why are σ , κ so **light** compared to a_0 , f_0 ? Why are the masses of a_0 , f_0 degenerate?
- Why do they have so different decay widths?

$$\Gamma(\sigma, \kappa) \approx 550 \text{ MeV}$$

 $\Gamma(a_0, f_0) \approx 50-100 \text{ MeV}$

- Why do both f₀ and a₀ couple to KK? (hidden strange-quark content of a₀?)
- Scalar mesons should be predominantly **p-waves** with masses similar to axial-vectors: $a_1, f_1 \sim 1.3 \text{ GeV}$
- Lattice: lightest scalars ~ 1.2-1.4 GeV Mathur et al. (2007), Dudek et al. (2010)

Consistent with 1st radial excitation? a_0 , $f_0 \sim 1.2-1.5$ GeV

Could these be light tetraquark (diquark-antidiquark) states? Jaffe '77

$$a_0$$
 (980 MeV) f_0 (980 MeV) $us\overline{us}$, ... κ (660 MeV) $us\overline{ud}$, ... σ (440 MeV) $ud\overline{ud}$

- Explains mass ordering:
 f₀ and a₀ have same strangeness content
- Explains **decay widths**: f_0 and a_0 decay into K \overline{K} ; "OZI-superallowed" mechanism leads to large widths for σ , κ :

• Lightest scalar $q\overline{q}$ states would be $a_0, f_0 \sim$ 1.2–1.5 GeV, consistent with lattice

Start from four-quark bound-state equation:

Keep only qq, $q\bar{q}$ interactions with separable T-matrix.

Obtain coupled diquark-antidiquark / meson-meson equations:

Heupel, Eichmann, Fischer, in preparation

Two-body simplification induces complications...

- pion poles in integrand;
- how do pion and diquark behave offshell?

Strategy: solve for $P^2 > 0$, extrapolate BSE eigenvalue to timelike $P^2 = -M^2$.

Coupled diquark-antidiquark / meson-meson system

yields a light scalar tetraquark ~ 400 MeV

Heupel, Eichmann, Fischer, in preparation

Setup		
E		
E + F		
E + F*		
Meson only		
Prefactors Fit1		
Prefactors Fit2		

Mass [GeV]		
0.43 ± 0.043		
0.44 ± 0.041		
0.46 ± 0.039		
0.30 ± 0.042		
0.32 ± 0.038		
0.39 ± 0.038		

Next: study four-quark equation directly!

Summary

Systematic description of QCD phenomenology from quark & gluon substructure:

- Nonperturbative: factorization property not necessary
- Dynamical chiral symmetry breaking: mass generation for quarks and light hadrons
- Poincaré covariance: quark orbital angular momentum via p waves
- · Quark-quark interaction dominant in ground-state baryons
- · Pion cloud essential for chiral and low-momentum structure
- Tetraquark identification for light scalar mesons likely correct

Need to improve **truncations** (pion cloud, decay channels, 3- and 4-quark interactions) and **kinematical coverage**

Interplay between experiment and theory:

- Hadron masses, wave functions, form factors and scattering amplitudes from QCD
- Refined tools for understanding fundamental properties of QCD from experiment

