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Introduction 
• Multi-messenger era for nuclear astrophysics 

✴ Gravitational waves have (just) been detected!

✴ Supernovae neutrino will be detected by the 
current and next generation neutrino experiments

S. Zeller, ECT* Workshop, May 2012 

MiniBooNE Detector 
10 

Aguilar-Arevalo et al., NIM A599, 28 (2009) 
(inside view of MiniBooNE tank) 

•  800 tons of mineral oil  
•  ν interactions on CH2 

•  Cerenkov detector → ring imaging for event reconstruction and PID v 

• Ton-scale neutrino-oscillation and             experiments

✴ Charge-parity (CP) violating phase and the 
mass hierarchy will be measured

✴ Determine whether the neutrino is a Majorana 
or a Dirac particle

0⌫��

✴ Need for including nuclear dynamics; mean-
field models are inadequate to describe neutrino-
nucleus interaction

✴ Nuclear dynamics determine the structure of 
neutron stars, neutrino abundances and neutrino 
propagation



Introduction 
• Adelchi’s work was (AND STILL IS) central
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ts in the
expec

tation
values

are re
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of othe
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Abstract 

We employ the local-density approximation to derive the spectral function P(k,  E)  of 

finite nuclei. For various densities of nuclear matter we calculate P(k,  E), and split it into 

the single-particle and correlated parts. For finite nuclei P(k,  E)  is calculated by combining 

the nuclear-matter correlated part, evaluated in local-density approximation, with the 

finite-nucleus single-particle part obtained from mean-field calculations or (e, e'p) experi- 

ments. These spectral functions are used to calculate cross sections for inclusive electron- 

nucleus scattering at large momentum transfer. The recoil-nucleon final-state interaction is 

treated in the local-density approximation as well. 

Keywords: Nuclear structure; Spectral function of finite nuclei; Cross sections for inclusive 

electron scattering 

1. Introduction 

The knowledge of the spectral function P ( k ,  E), the quantity that gives the 

probability to find in a nucleus a nucleon of momentum k and removal energy E,  

is needed for the theoretical description of a number  of nuclear processes. For the 

calculation of many observables it is important to have nuclear wave functions and 

spectral functions that are realistic for both the single-particle aspects and the 

short-range propert ies resulting from NN correlations. 

The need for a realistic P ( k ,  E )  is obvious in particular for processes involving 

large momentum transfers q. Examples for such processes are e lect ron-nucleus  

scattering, be it in the regime of low energy transfer to of  interest to quasi-elastic 

0375-9474/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved 
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Abstract: 
A microscopic 

theory 
based 

on orthogonal 
correlated 

basis 
functions 

is developed 
for the 

single-particle 
spectral 

function 
of an infinite 

Fermi system. 
The nucleon 

spectral 
function 

P(k, E) 

has 
been 

calculated 
for 

a realistic 
model 

of nuclear 
matter 

in which 
spin-isospin 

and 
tensor 

correlations 
are fully taken 

into account. 
P( k, E) is analyzed 

in terms of a single-particle 
strength, 

which 
turns 

out to be completely 
determined 

by two-body 
breakup 

processes, 
and a background 

which 
is mainly 

furnished 
by three-body 

breakup 
processes. 

The strength 
of single-particle 

states 

close to the Fermi 
surface 

can be measured 
by (e, e’p) reactions 

in kinematical 
conditions 

corre- 

sponding 
to low missing 

energy 
E, whereas 

the background 
requires 

a wide range 
of E values, 

extended 
up to several hundreds 

of MeV. The relations 
between 

P(k, E), the momentum 
distribution 

and the response 
function 

are discussed 
in connection 

with the analysis 
of inclusive 

(e, e’) data 
at 

high momentum 
transfer. 

1. Introduction 

The probability 
P(k, E) of removing 

a particle 
with momentum 

k from a target 

system, 
leaving 

the final 
system 

with excitation 
energy 

E, is a relevant 
quantity 

of 

quantum 
liquids; 

it is defined 
as 

(1.1) 

where, 
ai 

and 
ak represent 

particle 
creation 

and 
annihilation 

operators, 
(0) the 

ground 
state of the system 

with an energy 
eigenvalue 

EA and 
(2) are eigenstates 

of 

the 
(A- 

I)-nucleon 
final 

system 
with ~energy 

E,(A- 
1). It can 

be measured 
by 

inelastic 
scattering 

experiments. 
In the 

Fermi 
gas model, 

the 
spectral 

function 

P(k, E) has the simple 
form 

P(k, E)=6 
(E+$k’). 

(1.2) 
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energy for argon [16] and the actual excitation level of
the residual nucleus. We set its total value to a constant
Emiss=30 MeV. This is an approximation of the average
energy to remove a np pair from a Ar nucleus extrapo-
lated from single nucleon removal energy spectra for Ar
nuclei [17].
From the reconstructed neutrino energy and the mea-
sured muon kinematics, the components of the 4-
momentum transfer (!,~q) can eventually be inferred.
The muon momentum resolution is 5-10% [13]. The pro-
ton angular resolution (1-1.5�, depending on the track
length) and the proton energy resolution (about 6% for
protons above the Fermi momentum) are estimated by
MC simulation. The overall resolution in our neutrino
energy and transfer momentum reconstruction is dom-
inated by muon momentum resolution, as in CC inter-
actions the muon takes the largest fraction on the in-
cident neutrino energy. Discussion - Nucleon-nucleon
correlations are essential components of modern poten-
tials describing the mutual interaction of nucleons in nu-
clei. The strong, repulsive short-range correlations (NN
SRC) cause the nucleons to be promoted to states above
the Fermi level in the high-momentum tail of the nucleon
momentum distribution [20]. Thus, SRC cause nucleons
to form pairs with large relative momentum and small
center-of-mass momentum, i.e. pairs of nucleons with
large, back-to-back momenta. Due to NN tensor correla-
tions, SRC pairs are dominantly in iso-singlet (deuteron
like) state (np)I=0 [21].
Two-nucleon knock-out from high energy scattering pro-
cesses is the most appropriate venue to probe NN correla-
tions in nuclei. Two nucleons can be naturally emitted by
two-body mechanisms [4]: MEC - two steps interactions
probing two nucleons correlated by meson exchange cur-
rents, and “Isobar Currents” (IC) - intermediate state
�, N⇤ excitation of a nucleon in a pair with the pion
from resonance decay reabsorbed by the other nucleon.
It should be noted that the NN pairs in these two-body
processes may or may not be SRC pairs.
One-body interactions can also lead to two-nucleon ejec-
tion. This happens when the struck nucleon is in a SRC
pair and the high relative momentum in the pair would
cause the correlated nucleon to recoil and be ejected as
well [12].
It should also be noted that in both cases final state
interactions (FSI) - momenta or charge exchange and in-
elastic reactions - between the outgoing nucleons and the
residual nucleus [10] may alter the picture.

Hadron scattering experiments were extensively per-
formed to probe NN SRC in nuclei. In pion-nucleus ex-
periments in the intermediate energy range (incident en-
ergy fixed in the �-resonance range, 100-500 MeV) the
cross section is high and the main contribution is from ab-
sorption processes. Pion absorption is highly suppressed
on a single nucleon in the nucleus. Thus, absorption re-
quires at least a two-nucleon interaction. The simplest
and most frequent absorption mechanism (for A�12) is
on np pairs (“quasi-deuteron absorption (QDA)”: e.g.

FIG. 4. 2D views of one of the four “hammer events”,
with a forward going muon and a back-to-back proton pair
(pp1 = 552 MeV/c, pp2 = 500 MeV/c). Transformations
from the TPC wire-planes coordinates (w,t “Collection plane”
[Top], v,t “Induction plane” [Bottom]) into Lab coordinates
are given in [13].

⇡+ + (np) ! pp). Most of the pion energy is carried
away by the ejected nucleons (whose separation energy
contributes to the missing energy budget) and part of
the momentum can be transferred to the recoil nucleus
(missing momentum). Observation, e.g. from bubble-
chamber experiments, of pairs of energetic protons with
3-momentum pp1, pp2 � kF detected at large opening an-
gles in the Lab frame (cos�  �0.9) suggested first hints
for SRC in the target nucleus [22].

Electron scattering experiments extensively studied
SRC. Experiments of last generation probe SRC by triple
coincidence - A(e, e0np or pp)A-2 reaction - where the
two knock-out nucleons are detected at fixed angles. The
SRC pair is typically assumed to be at rest prior to the
scattering and the kinematics reconstruction utilizes pre-
defined 4-momentum transfer components determined
from the fixed beam energy and the electron scattering
angle and energy. NN SRC are associated with finding
a pair of high-momentum nucleons, whose reconstructed

initial momenta are back-to-back and exceed the charac-
teristic Fermi momentum of the parent nucleus, while the
residual nucleus is assumed to be left in a highly excited
state after the interaction [23]. Recent results from JLab
(on 12C) indicate that �20% of the nucleons (for A�12)
act in correlated pairs. 90% of such pairs are in the form
of high momentum iso-singlet (np)I=0 SRC pairs; 5% are
in the form of SRC pp pairs; and, by isospin symmetry,
it is inferred that the remaining 5% are in the form of
SRC nn pairs [24].

Neutrino scattering experiments, to our knowledge,
have never attempted to directly explore SRC through
detection of two nucleon knock-out. The main limita-
tion compared to electron scattering comes from the in-
trinsic uncertainty on the 4-momentum transfer. This
originates from the a priori undetermined incident neu-

Nuclear correlations 
 Recently, the liquid Argon detector ArgoNeuT was able to elucidate the role of nuclear 
correlations in neutrino-nucleus scattering events.
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Lepton-nucleus scattering 
The inclusive cross section of the process in which 
a lepton scatters off a nucleus can be written in 
terms of five response functions

• The response functions contain all the information on target structure and dynamics
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Schematic representation of the inclusive cross section as a function of the energy loss.

• Elastic scattering and 
inelastic excitation of discrete 
nuclear states.

• Broad peak due to quasi-
elastic electron-nucleon 
scattering.

• Excitation of the nucleon to 
distinct resonances (like the Δ) 
and pion production.

Electron-nucleus scattering 
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•       provides an accurate description of the NN scattering data  and reduces to Yukawa’s one-
pion-exchange potential at large distances
vij

•         effectively includes the lowest nucleon excitationsVijk

Nuclear hamiltonian 

⇡

� ⇡ ⇡ ⇡ ⇡ ⇢,!

• Consistent two-body currents account for processes in which the vector boson couples to the 
meson exchanged between two nucleons or to the excitations of nuclear resonances

Ab initio approaches are based on a non-relativistic nuclear hamiltonian



Quantum Monte Carlo
• Diffusion Monte Carlo methods use an imaginary-time projection technique to enhance the 

ground-state component of a starting trial wave function.
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Moderate momentum transfer

• Both initial and final states are eigenstates of the nuclear Hamiltonian

• For electron scattering on 12C

H| f i = Ef | f iH| 0i = E0| 0i

|12C⇤i, |11B, pi, |11C, ni, |10B, pni, |10B, ppi . . .
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At finite imaginary time the contributions from 
large energy transfer are quickly suppressed

Euclidean response function 
Valuable information on the energy 
dependence of the response functions can 
be inferred from the their Laplace transforms

The system is first heated up by the transition operator.

Its cooling determines the Euclidean response of the system

Quantum Monte Carlo
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Diffusion Branching
In nuclear physics, we have a!
set of amplitudes for each spin !
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matter physics…



12C electromagnetic response 

q=570 MeV

• Very good agreement with the experimental data 

• Small contribution from two-body currents to the transverse response functions. 

• No quenching of the proton electric form factor! 
AL et al. ArXiv 1605.00248



12C electromagnetic response 

q=570 MeV

• Very good agreement with the experimental data. 

• Sizable contribution from two-body currents to the transverse response functions. 

• Very likely the solution of the axial mass puzzle ! 
AL et al. ArXiv 1605.00248



• With Diego we are moving towards larger nuclei like 16O and 40Ca

Using supercomputers 
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• Since we are lazier than (and not as smart as) Adelchi, we use quantum Monte Carlo!

• The agreement with the experimental data is remarkably good!
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• We do indeed generate very nice plots, but millions of hours of computing time burned!

Using supercomputers 



Large momentum transfer

• Same initial state but final state factorizes

H| 0i = E0| 0i | f i = |pi ⌦ | f̃ iA�1

• Sum of individual cross sections weighted by the spectral function
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With Noemi, to use relativistic MEC and realistic description of the nuclear ground state we have 
extended the factorization scheme to account for two-nucleon emission amplitude

12C calculations indicate a sizable enhancement of the electromagnetic  transverse response

| f i ! |pp0i ⌦ | f̃ iA�2

Spectral function approach 

Different results obtained within GFMC and SF approach

4

by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [38] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
di�er only in the sign of this vector-axial interference re-
sponse, and that this di�erence is crucial for inferring
the charge-conjugation and parity violating phase, one
of the fundamental parameters of neutrino physics, to
be measured at the Deep Underground Neutrino Exper-
iment (DUNE)[39].

FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Because pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q = 570 MeV/c case.

We conclude by updating in Fig. 3 the results for the

Coulomb sum rule of 12C obtained in Ref. [5]. The theo-
retical calculation (solid line) and analyses of the experi-
mental data (empty and full circles) are from that work.
We recall that the empty circles are obtained by inte-
grating RL(q,!) up to !max, the highest measured en-
ergy transfer, while the full circles also include the “tail”
contribution for ! > !max and into the time-like region
(! > q), which cannot be accessed in (e, e0) scattering
experiments, by assuming that the longitudinal response
in 12C is proportional to that of the deuteron [5]. As
the direct calculations demonstrate in Figs. 1–2, there
is non-vanishing strength in the time like-region (see in
particular the top panels of these figures which extend
to ! > q), and this strength needs to be accounted for
before comparing theory to experiment.

The square data points in Fig. 3 have been obtained
by adding to the full circles the contribution due to the
low-lying J� = 2+, 0+

2 , and 4+ states. Given the choice of
normalization for SL(q) in Fig. 3, this contribution is sim-
ply given by the sum of the squares—each multiplied by
Z = 6—of the (longitudinal) transition form factors listed
in Table I. Among these, the dominant is the form factor
to the 2+ state at 4.44 MeV excitation energy. The con-
tributions associated with these states, in particular the
2+, were overlooked in the analysis of Ref. [5] and, to the
best of our knowledge, in all preceding analyses—the dif-
ference between total inelastic and quasi-elastic strength
alluded to earlier was not fully appreciated. While they
are negligible at large q (certainly at q = 570 MeV/c),
they are significant at low q. They help to bring theory
into excellent agreement with experiment.

Figures 1 and 2 clearly demonstrate that the picture
of interacting nucleons and currents quantitatively de-
scribes the electromagnetic response of 12C in the quasi-
elastic regime. The key features necessary for this suc-
cessful description are a complete and consistent treat-
ment of initial-state correlations and final-state interac-
tions and a realistic treatment of two-nucleon currents,
all fully and exactly accounted for in the GFMC calcula-
tions. In the transverse channel the interference between
one- and two-body current (schematically, 1b-2b) con-
tributions is largely responsible for enhancement in the
quasi-elastic peak, while this interference plays a minor
role at large !, where 2b-2b contributions become dom-
inant. The absence of explicit pion production mech-
anisms in this channel restricts the applicability of the
present theory to the quasi-elastic region of RT (q, !), for
!’s below the �-resonance peak. Finally, the so-called
quenching of the longitudinal response near the quasi-
elastic peak emerges in this study as a result of initial-
state correlations and final-state interactions.

A critical reading of the manuscript by Ingo Sick is
gratefully acknowledged. This research is supported
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are negligible at large q (certainly at q = 570 MeV/c),
they are significant at low q. They help to bring theory
into excellent agreement with experiment.

Figures 1 and 2 clearly demonstrate that the picture
of interacting nucleons and currents quantitatively de-
scribes the electromagnetic response of 12C in the quasi-
elastic regime. The key features necessary for this suc-
cessful description are a complete and consistent treat-
ment of initial-state correlations and final-state interac-
tions and a realistic treatment of two-nucleon currents,
all fully and exactly accounted for in the GFMC calcula-
tions. In the transverse channel the interference between
one- and two-body current (schematically, 1b-2b) con-
tributions is largely responsible for enhancement in the
quasi-elastic peak, while this interference plays a minor
role at large !, where 2b-2b contributions become dom-
inant. The absence of explicit pion production mech-
anisms in this channel restricts the applicability of the
present theory to the quasi-elastic region of RT (q, !), for
!’s below the �-resonance peak. Finally, the so-called
quenching of the longitudinal response near the quasi-
elastic peak emerges in this study as a result of initial-
state correlations and final-state interactions.

A critical reading of the manuscript by Ingo Sick is
gratefully acknowledged. This research is supported
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These differences should be ascribed to. . .
Differences in the two-nucleon currents employed in the two cases
The non relativistic nature of the GFMC calculations
Interference between amplitudes involving the one- and two-body
currents and 1p1h final states
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q=570 MeV



As pointed out by Noemi, we have some problems here

Spectral function vs GFMC Different results obtained within GFMC and SF approach
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• Differences in the two-nucleon currents employed in the two cases

• The non relativistic nature of the GFMC calculations

• Interference between amplitudes involving the one- and two-body currents and 1p1h final states

This discrepancy can be ascribed to



1p-1h final states 
• One-particle one-hole, two-particle two-hole states are definition dependent

| 0i ⇡ F|�0i =
N>>1X

n=1

|�np,nhi

✏F
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•Only n-particle n-holes correlated states are asymptotic states of the hamiltonian, hence 
observables, in principle.

|�0i |�2p2hi

• Two-particle two-hole correlated state correspond to a linear combination of n-particle n-hole 
mean field states



Adelchi’s 1997 PRC 
• The enhancement in the quasi elastic peak is surprising, but NOT NEW

Inclusive transverse response of nuclear matter
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The electromagnetic inclusive transverse response of nuclear matter at saturation density is studied within
the correlated basis function perturbation theory for momentum transfers q from 300 to 550 MeV/c . The
correlation operator includes a Jastrow component, accounting for the short range repulsion, as well as longer
range spin, tensor, and isospin ones. Up to correlated one-particle–one-hole intermediate states are considered.
The spreading due to the decay of particle ~hole! states into two-particle–one-hole ~two-hole–one-particle!
states is considered via a realistic optical potential model. The Schiavilla-Pandharipande-Riska model for the
two-body electromagnetic currents, constructed so as to satisfy the continuity equation with realistic v14
potentials, is adopted. Currents due to intermediate D-isobar excitations are also included. The global contri-
bution of the two-body currents turns out to be positive and provides an enhancement of the one-body
transverse response ranging from ;20% for the lower momenta to ;10% for the higher ones. This finding is
in agreement with the Green’s function Monte Carlo studies of the transverse Euclidean response in A53,4
nuclei and contradicts previous results obtained within the Fermi gas and shell models. The tensor-isospin
component of the correlation is found to be the leading factor responsible for such a behavior. The nuclear
matter response is compared to recent experimental data on 40Ca and 56Fe. @S0556-2813~97!04801-2#

PACS number~s!: 21.65.1f, 21.30.Fe, 24.10.Cn, 25.70.2z

I. INTRODUCTION

The cross section for inclusive electron scattering at inter-
mediate three-momentum transfers (q<600 MeV/c) has
been the object of many theoretical and experimental inves-
tigations. In the one-photon-exchange approximation the dif-
ferential cross section is given by

d2s
dVdv

5sMH qm
4

q4 RL~q ,v!1F tan2S u

2 D 2
qm
2

2q2GRT~q ,v!J ,
~1!

where sM is the Mott cross section, qm
25v22q2 is the

squared four-momentum transfer, u is the scattering angle,
and RL(T)(q ,v) is the longitudinal ~transverse! separated re-
sponse.
The total cross section is indeed well described by a

simple Fermi gas ~FG! model @1#, but the agreement disap-
pears when the longitudinal-transverse (L/T) separation
@2–9# is carried out for medium-heavy nuclei. RL is largely
overestimated by the FG model. However, the quenching of
the longitudinal response is now well understood in terms of
short range dynamical correlations, induced by the strong
nucleon-nucleon (NN) interaction, and of nucleon degrees of
freedom alone.
In Ref. @10# a realistic model of correlated nuclear matter

~NM! was used to study RL(q ,v) at the NM empirical satu-
ration density, in the framework of the correlated basis func-
tion ~CBF! theory. The density-dependent nuclear matter
CBF results have then been used in Ref. @9# to estimate the
longitudinal response in 12C, 40Ca, and 56Fe in the local
density approximation ~LDA!. The overall agreement with
the experimental data was shown to be satisfactory.
The present understanding of RT(q ,v) is more uncertain.

Recent experimental L/T separations in 40Ca @6,9# have pro-
vided a transverse response lower than previous estimates @4#

at the quasielastic ~QE! peak. On the other side, theoretical
realistic calculations ~feasible in the longitudinal case! have
been so far prevented by the complicated structure of the
transition operator, containing one- and two-body currents.
In light nuclei (A53,4) only the Euclidean transverse re-
sponse, with the full current operator, has been computed
@11# using the exact Green’s function Monte Carlo ~GFMC!
technique and the realistic Argonne v14 NN interaction @12#.
The GFMC technique cannot be presently adopted in heavier
nuclei, and so studies of RT(q ,v) in these systems either
have considered only the easier to address one-body piece
@13,14# or have treated the two-body meson exchange cur-
rents ~MEC’s! within independent particle models ~IPM’s!
@15–17#. The MEC’s were found to substantially increase the
one-body response in Ref. @11#, whereas the IPM calcula-
tions of Ref. @17# point to a slight reduction. It is worth
noticing that the aforementioned latest heavy-nuclei-
separated RT(q ,v) show a good agreement with theoretical
responses containing only one-body currents @9#, downplay-
ing the role of the MEC’s and in contrast with both the light
nuclei case and the old 40Ca data.
Aim of this work is to use CBF theory to compute the

symmetric nuclear matter transverse response in order to
ascertain how it is affected by the NN correlations. Particular
attention will be devoted to their influence on the MEC
contribution. The results presented in this paper have been
obtained within the exchange current operator model
developed by Schiavilla, Pandharipande, and Riska ~SPR! in
Ref. @18#. The SPR model satisfies the continuity equation
linking the current to the NN interaction and contains inter-
mediate D-isobar excitations. For the sake of comparison,
also the standard one-pion-exchange currents have been
used.
In nuclear matter, CBF calculations are based upon a set

of correlated wave functions

PHYSICAL REVIEW C JANUARY 1997VOLUME 55, NUMBER 1

550556-2813/97/55~1!/338~11!/$10.00 338 © 1997 The American Physical Society

termediate D-isobar excitation currents. Ground and 1p1h
correlated states are included and the decay into 2p2h states
is implemented by folding RT

1p1h(q ,v) with the imaginary
part of the optical potential.
Our results indicate that MEC’s, evaluated in a Jastrow

correlated model, quench the IA response. In this case,
the situation is qualitatively close to what was found
by Amaro et al. in Ref. @17# in both shell and Fermi gas
models. The net quenching mainly originates from a strong
cancellation between the positive contact and the negative
D terms.
The introduction of tensor-isospin-dependent correlations

drastically changes this picture. The D contribution is
largely modified, as it becomes positive and increasing
with the momentum transfer. As a result, MEC’s produce
an extra strength ~10–20 %! in the QE peak region. This
is in agreement with exact GFMC calculations in light
nuclei.

r-like exchange currents give a small additional enhance-
ment. We also found that using standard one-boson-
exchange currents does not significantly change our
results.
Two recently derived experimental responses in

40Ca have consistently lowered the QE peak respect to
previous estimates. The new data and the CBF NM
responses are in reasonable agreement and the comparison
seems to show too large MEC effects at low momenta.
The obvious caveat to bear in mind is that this compar-
ison is made between finite nuclear systems
and infinite, homogenous nuclear matter. The CBF theory
has been recently extended @37# to deal with ground state
properties of nuclei as heavy as 208Pb, with Jastrow
and isospin-dependent correlations. It is conceivable that, in
the near future, it will be possible to use the theory to
microscopically compute the finite nuclei responses, employ-
ing richer correlations, as those of nuclear matter. Presently,
the density-dependent NM results might be used in a
local density approximation for a closer comparison with the
experiments.
Moreover, relativistic corrections could affect the

FIG. 6. Transverse responses at q5300 ~a!, 380 ~b!, and 570 ~c!
MeV/c for 40Ca and nuclear matter. See text.

FIG. 7. Transverse responses at q5380 ~a! and 570 ~b! MeV/
c for 56Fe and nuclear matter. See text.
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• Back in 1997 Adelchi found a significant 
enhancement of the transverse response 
function from two-body current .

• This enhancement, in the quasielastic 
peak region, is due to correlated one-
particle one-hole final states.

scattering cross section at high momentum transfers has been
computed in Ref. @33#, using the CBF spectral function, and
satisfactorily compared with that extrapolated from data on
laboratory nuclei.
Hence, relying on these facts, we will compute RT(q ,v)

by inserting in the intermediate state summation of Eq. ~4!
only correlated 1p1h states:

uph&5SF)
i, j

f ~ i , j !G uph&FG . ~15!

This choice is also justified on the ground that we are
interested mainly in the QE peak. The quantitative study of
the large energy region would have required the insertion of
higher excited states with both nucleonic ~as 2p2h) and ex-
plicit D isobar excitations ~as D-h).
The 1p1h transverse response is then given by

RT
1p1h~q ,v!5

1
A(ph u^0uj~q!uph&u2d~v2ep1eh!, ~16!

where ex5p ,h5^xuHux&2^0uHu0& is the CBF variational ~or
zeroth order! single-particle energy of the x state.
The 1p1h response has sharp energy boundaries, qualita-

tively like the Fermi gas, ruled by the real part of the CBF
optical potential, Uk5ek2\2k2/2mN @30#. The decay of
1p1h states into 2p2h ones has the main effect of introduc-
ing a large energy tail and redistributing the strength. In the
perturbative expansion this is accounted for by self-energy
insertions on top of the particle or hole line. The real part of
the self-energy provides a perturbative correction dex to the
variational single-particle energy and the imaginary part in-
duces the spreading of the response to high v values. The
microscopically computed CBF self-energy was used in the

longitudinal response calculation of Ref. @10#. In Ref. @24#
these corrections were estimated by folding the 1p1h re-
sponse with a width W(v) given by the imaginary part
W0(v) of the optical potential divided by the nucleon effec-
tive mass,

RT~q ,v!5
1
pE dv8RT

1p1h~q ,v8!
W~v!

~v2v8!21W~v!2
,

~17!

with W0(v);11v2/(49001v2), in MeV. This procedure,
numerically much less involved and equivalent to retain the
on-energy shell part of the self-energy only, was checked to
be reliable in the momentum region of interest @10# and, for
this reason, has been adopted here.

III. CBF MATRIX ELEMENTS OF THE CURRENT

This section will focus on the main features of the MEC
CBF matrix elements. As far as the MI currents is concerned,
only the leading jPS

(2)(q) will be discussed. However, the con-
tributions of the less influent jV

(2)(q) and jVS
(2)(q) have been

evaluated and will be presented in the next section.
The configuration space PS current is written as a sum of

two terms jPS ,C
(2) (q) and jPS ,p

(2) (q). The first one coincides with
jcont
(2) (q) for the one-pion-exchange potential, the latter with
jp
(2)(q). Their expressions are

jPS ,C~2 ! ~q!5CPS(
i, j

3~ti3tj!z$eıq•rigPS~r !s i~s j• r̂!1i⌦ j%

~18!

and

jPS ,p~2 ! ~q!5CPS(
i, j

3~t i3t j!zeıq•RH GPS ,1~r!
r2 @s i~s j• r̂!1s j~s i• r̂!1 r̂~s i•s j!#1ı

GPS ,2~r!
r s i~s j•q!2ı

GPS ,3~r!
r s j~s i•q!

2ı
GPS ,4~r!

r r̂~s i• r̂!~s j•q!1ı
GPS ,5~r!

r r̂~s j• r̂!~s i•q!2GPS ,6~r!r̂~s i•q!~s j•q!2ı
GPS ,7~r!

r2 r̂~s i• r̂!~s j• r̂!J .
~19!

The functions gPS(r) and GPS ,a51,7(r) are defined in Ref.
@18#, R5(ri1rj)/2, and CPS5G(q ,v).
In CBF theory the nondiagonal matrix elements

jPS ,C(p)(q;p,h)5^0ujPS ,C(p)
(2) (q)up,h& are computed by clus-

ter expansions in Mayer-like diagrams, built up by dynami-
cal correlations f (q) f (p)2dq1dp1 and by exchange links. In-
finite classes of cluster terms containing Jastrow correlations
are summed by FHNC. Less massive summations, similar to
SOC’s, can be performed for the operatorial correlations
@10,24#.
In the case of simple Jastrow correlated wave functions

( f q.150), jPS ,C
J is given by

jPS ,C
J ~q;p,h!5dq2p1hıCPS

6tz
AD~p !D~h !

r0

3E drgPS~r !gcc~r !$eıp•r~ r̂2ıs3 r̂!

1eıh•r~ r̂1ıs3 r̂!%, ~20!

where tz5tp ,z5th ,z , s5sp5sh , D(x5p ,h)512Xcc(x)
~see Ref. @24# for the definition of Xcc), gcc(r) is
the exchange FHNC partial radial distribution function
@19#, and r0 is the nuclear matter density. At the lowest

55 341INCLUSIVE TRANSVERSE RESPONSE OF NUCLEAR MATTER



• Adelchi showed that the tensor-isospin component of the correlation is the leading factor 
responsible for such a behavior.

stress once again that this conflict is not resolved by the
inclusion of state-independent, scalar, short range correla-
tions.
In Ref. @23# it was shown that the transverse spin re-

sponses, making up RT
IA(q ,v), may be affected by the non-

Jastrow correlations. In particular, the largest effect was
found in the isovector ST ,s

t51 , as the leading correction is
proportional to the large tensor-isospin correlation f tt(r).

Hence, the correlation operator ~3! has been used to estimate
the corrections to the Jastrow response due to the nonscalar
components, in the D2B/L approximation.
Figure 4~a! reports the correlation operator results for the

interference 1p1h responses at q5400 MeV/c . We find that,
at the QE peak, the operatorial correlations quench the OB/C
and OB/p responses with respect to the Jastrow case. The
use of the D2B in place of the D2B/L approximation does
not change appreciably the outcome. The quenching is more
pronounced for the OB/p term, where a positive tail is added
at large energies.
The effect is dramatic in OB/D , as the correlation

operator correction largely cancels the Jastrow response,
yielding a positive net result. The origin of this cancellation
is found in the tensor-isospin correlation contribution
to the second integral in the RHS of Eq. ~26!. In fact,
the OB/D response obtained by setting f tt50 in the integral
is much closer to the Jastrow curve, as is shown in the figure
by the 3 signs. The convergence of the cluster expansion
has been checked by computing the integral ~i! in D2B
approximation and ~ii! adding Jastrow dressed three-body
nonfactorizable diagrams, linear in the operatorial compo-
nents of the correlation. The result is practically indistin-
guishable from the D2B/L response and it is not given in the
figure.
A similar ~and even more enhanced! behavior is found at

FIG. 3. 1p1h transverse response at q5300 ~a!, 400 ~b!, and
550 ~c! MeV/c for the FG and Jastrow models. The figure shows
the partial ~one-body, interference, and one quadratic! and the total
responses. The interference terms for the contact ~triangles up! and
D ~triangles down! currents in the one-pion-exchange model at
q5400 MeV/c are given.

FIG. 4. 1p1h interference responses at q5400 ~a! and 550 ~b!
MeV/c in the correlation operator model and comparison with the
Jastrow model. See text.
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termediate D-isobar excitation currents. Ground and 1p1h
correlated states are included and the decay into 2p2h states
is implemented by folding RT

1p1h(q ,v) with the imaginary
part of the optical potential.
Our results indicate that MEC’s, evaluated in a Jastrow

correlated model, quench the IA response. In this case,
the situation is qualitatively close to what was found
by Amaro et al. in Ref. @17# in both shell and Fermi gas
models. The net quenching mainly originates from a strong
cancellation between the positive contact and the negative
D terms.
The introduction of tensor-isospin-dependent correlations

drastically changes this picture. The D contribution is
largely modified, as it becomes positive and increasing
with the momentum transfer. As a result, MEC’s produce
an extra strength ~10–20 %! in the QE peak region. This
is in agreement with exact GFMC calculations in light
nuclei.

r-like exchange currents give a small additional enhance-
ment. We also found that using standard one-boson-
exchange currents does not significantly change our
results.
Two recently derived experimental responses in

40Ca have consistently lowered the QE peak respect to
previous estimates. The new data and the CBF NM
responses are in reasonable agreement and the comparison
seems to show too large MEC effects at low momenta.
The obvious caveat to bear in mind is that this compar-
ison is made between finite nuclear systems
and infinite, homogenous nuclear matter. The CBF theory
has been recently extended @37# to deal with ground state
properties of nuclei as heavy as 208Pb, with Jastrow
and isospin-dependent correlations. It is conceivable that, in
the near future, it will be possible to use the theory to
microscopically compute the finite nuclei responses, employ-
ing richer correlations, as those of nuclear matter. Presently,
the density-dependent NM results might be used in a
local density approximation for a closer comparison with the
experiments.
Moreover, relativistic corrections could affect the

FIG. 6. Transverse responses at q5300 ~a!, 380 ~b!, and 570 ~c!
MeV/c for 40Ca and nuclear matter. See text.

FIG. 7. Transverse responses at q5380 ~a! and 570 ~b! MeV/
c for 56Fe and nuclear matter. See text.
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stress once again that this conflict is not resolved by the
inclusion of state-independent, scalar, short range correla-
tions.
In Ref. @23# it was shown that the transverse spin re-

sponses, making up RT
IA(q ,v), may be affected by the non-
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Adelchi’s 1997 PRC 



• We are including this reaction mechanism within the spectral function formalism

Adelchi’s 1997 PRC 

• This could potentially be seen in (e,e’,p) experiments, including the one of Omar on 40Ar!



Conclusions
• Adelchi made key contributions in the study of the structure and of the response functions of 
strongly interacting nuclear systems.

✴ He is one of the three (crazy) people who embarked in the calculation of the 
nuclear matter spectral function within CBF

✴ He computed the spin longitudinal and transverse responses of infinite nuclear 
matter, using the full FHNC/SOC machinery

• I really enjoy Adelchi’s papers and I would like to point out a recommendation 

✴ He performed a full calculation of the electromagnetic longitudinal and transverse 
response functions, including meson-exchange currents
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in the present work should be in error by less than half
the difference. The difference between PB and JF evalua-
tions is given for some of the calculations in Appendix B.
The second concern is the adequacy of the SOC ap-

proximation for spin, isospin, and tensor correlation con-
tributions. One measure of its accuracy is the size of the
newly added terms discussed in Appendix A. At p„
these give less than 1 MeV total contribution in either nu-
clear or neutron matter, but at 4 p„ they give about 8
MeV. If the next set of higher-order terms has a similar
rate of convergence, we expect errors of less than 4 MeV
at 4 p„. Another measure of the accuracy for the
FHNC-SOC approximation is how well the integral con-
dition on the operator components of the pair distribu-
tion function g (r) is satisfied

p f d r[g'(r) —1]=—,'p f d rg'(r)= —1 .
0 0

(3.6)

The values of these integrals are also tabulated with the
results in Appendix B. In the search for optimal varia-
tional parameters, these integrals are satisfied within 10%
for nuclear matter up to 3 p„. At higher densities the
integral condition may be violated by more than 10%, so
a constraint is added to the search procedure to keep the
integral within 10% of their required values.
The third concern is the treatment of spin-orbit corre-

lations. Here the accuracy is more difficult to estimate
and the best test is probably an indirect one: the compar-
ison between Brueckner-Bethe and variational calcula-
tions in nuclear matter, discussed in more detail in Sec.
IV. The difference between Brueckner-Bethe and varia-
tional calculations does not change when progressing
from a v 6 model problem without spin-orbit potentials to
the full v, 4 models, which suggests the spin-orbit correla-
tions are being adequately treated. ' Unfortunately this
comparison has not been made in neutron matter, or
above 2 p„ in nuclear matter, where the spin-orbit terms
may be expected to become relatively more important.
Our fourth concern is the evaluation of the three-body

potential. To estimate its uncertainty we have calculated
the contribution of terms with three noncentral correla-
tions (one between each pair) to the expectation value of
VJI, in nuclear matter. These are expected to be the larg-
est terms not calculated in previous work. Their contri-
bution is 0.1 MeV at p„but can be as big as 7 MeV at 4
p„or about 10% of V, k. If neglected higher-order
terms are smaller by the ratio of these three-correlation
terms to the lower-order terms, they would be =1 MeV
at4 p„.
We have tried to estimate our total uncertainty in the

expectation values by several different methods, which in-
volve a detailed analysis of the different diagram contri-
butions in the cluster expansion. The error estimates are
0.5 MeV at p„, 2.5 MeV at 3 p„, and 5 MeV at 6 p„.
We have tried to minimize the possibility of program-
ming errors by computing most of the terms with two in-
dependently written codes, and carefully comparing re-
sults to search for and repair discrepancies.
The search for the best variational trial function is

greatly simplified by reducing the 30 possible parameters
d, a, and P' of Eq. (3.4) to a more manageable three to

five parameters. We make the approximation that the
tensor correlations, p =5—6, have a range d' and all other
correlations, p=1—4, 7—8, have a range d, with d (d'.
We also approximate the quenching factor a~ with two
values: either 1 or a. In nuclear matter we take a1'=1
for central, L, and quadratic spin-orbit forces,
p = 1,9, 13—14, and a for all others, p =2—8, 10—12. In
neutron matter, since isospin dependence disappears, this
changes to u~= 1 for p = 1-2,9—10,13—14 and a, for the
remaining ones, @=3—8, 11—12. For cases with two-
body potentials only, all P' are set to unity. 20
When three-body potentials are present, we introduce

two values for fY~" P for @=2—4, 7—8 and P' for
p =5—6; normalization requires that P'=1. This extra
flexibility allows for the fact that the best trial function
for the full Hamiltonian can differ moderately from that
for the two-body potential alone and can give a
significant lowering of the energy. This is particularly
true in neutron matter. If we restrict ourselves to the
three parameters d, d', and u for AV14 plus UVII in nu-
clear (neutron) matter, the energy at p=0. 15 fm is 0.1
(1.9) MeV higher, while at p=0. 50 fm it is 8.4 (25.5)
MeV higher. The addition of these parameters to the
two-body potential case makes only a marginal improve-
ment: for AV14 in nuclear (neutron) matter at p=0. 15
fm the energy is reduced by only 0.01 (0.04) MeV,
while at p=0. 50 fm the energy is reduced by 0.2 (0.6)
MeV.
An automated search for the best variational parame-

ters has been made in the present work. The procedure
uses a modified simplex ' search in the parameter space
to find an approximate minimum, followed by a quadratic
fit to refine the minimum. Due to technical reasons in-
volving grid spacings, the ratio d/d' is varied in fixed
steps while the values of d', a, P, and P' are searched in
a continuous fashion with the simplex-quadratic method.
As mentioned above, a constraint is added at higher den-
sities to keep the integral conditions of Eq. (3.6) for g'
and g' reasonably well satisfied. This constraint involves
simply adding to the energy a constant times the sum of
the squares of the deviations from unity in Eq. (3.6), i.e.,
we minimize the quantity:

P

2
E+C 1+p d r g' r —1 + 1+'p rg'r

0 0

Here C may range from 500 MeV at 3 p„ to 2500 MeV
at 10p„. This constraint helps ensure that the expecta-
tion values are reasonably accurate, but may artificially
increase the upper bounds to the energy. Despite the
constraint, we find upper bounds for the UV14 plus TNI
model that are below those reported by FP at higher den-
sities.
On average about 40 function evaluations per density

are made for the three-parameter searches, and about 90
function evaluations per density for the five-parameter
searches. Final runs are made at the minimum point
with extra iterations of the FHNC —SOC equations and
integration grids that are twice as fine. The search plus
final run requires 1.5 (6) min CPU time on one processor
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IA: Spectral function approach 

The spectral function and the factorization of the nuclear transition matrix elements allows to 
combine a fully relativistic description of the electromagnetic interaction with an accurate treatment 
of nuclear dynamics




The sum rule of the spectral function corresponds to the momentum distribution

Constraining the spectral function with QMC  

• Within Quantum Monte Carlo, we have 
already computed the momentum 
distribution of nuclei as large as 16O 
and 40Ca. 

• The energy weighted sum rules of the 
spectral function can also be computed 
within cluster variational Monte Carlo

Work led by Diego Lonardoni 
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 The results we obtained are very nice, but limited and not completely satisfactory 

Path forward

Within this framework, the theoretical error arising from modeling 
the nuclear dynamics cannot be properly assessed!

• The continuity equation only constraints the longitudinal components of the current

• The transverse component and the axial terms are phenomenological (the coupling 
constant is fitted on the tritium beta-decay)

Chiral effective field theory (   EFT) has witnessed much progress during the two decades since the 
pioneering papers by Weinberg  (1990, 1991, 1992)

In    EFT, the symmetries of quantum chromodynamics (QCD), in particular its approximate chiral 
symmetry, are employed to systematically constrain classes of Lagrangians describing the interactions 
of baryons with pions as well as the interactions of these hadrons with electroweak fields

�

�

• Two- and three- body forces not fully consistent



Chiral EFT 
    EFT provides a framework to derive consistent many-body forces and currents and the tools to 
rigorously estimate their uncertainties, along with a systematic prescription for reducing them.
�
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FIG. 9: Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cuto↵ of R = 0.9 fm
in comparison with the NPWA [41] (solid dots) and the GWU single-energy np partial wave analysis [89] (open triangles). The
light- (color online: yellow), medium- (color-online: green) and dark- (color-online: blue) shaded bands depict the estimated
theoretical uncertainties at NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have
been used in the fits at N3LO.

R = 1.2 fm. In summary, we find that the suggested approach for error estimation is more reliable than the standard
procedure by means of cuto↵ bands and, in addition, has the advantage of being applicable for a fixed value of R.
This allows one to avoid the artificial increase of the theoretical uncertainty due to cuto↵ artefacts, the issue which
is especially relevant at high energies where the chiral expansion converges slower. The issue with using the cuto↵
bands is expected to become particularly important at next-to-next-to-next-to-next-to-leading order (N4LO) in the
chiral expansion. In particular, we expect that the residual cuto↵ dependence at N4LO will be comparable to that
at N3LO, and that it will significantly overestimate the real N4LO uncertainty at higher energies in a close analogy
to what is observed at N2LO. Last but not least, the ability to carry out independent calculations with quantified
uncertainties also provides a useful consistency check.

Next, we show in Fig. 9 the estimated uncertainty of the S-, P- and D-wave phase shifts and the mixing angles ✏1 and
✏2 at NLO, N2LO and N3LO based on R = 0.9 fm. The various bands result by adding/subtracting the estimated
theoretical uncertainty, ±��(Elab) and ±�✏(Elab), to/from the results shown in Fig. 3. In a similar way, we also
looked at selected neutron-proton scattering observables at di↵erent energies shown in Figs. 10-13. For the lowest
considered energy of Elab = 50MeV, we show, in addition to the results using R = 0.9 fm, also our predictions for the
softest cuto↵ choice of R = 1.2 fm. While the uncertainty is clearly increased, the results actually still appear to be
rather accurate at this energy. Our results agree with the ones of the NPWA for all considered observables and energies
indicating that the employed way to estimate the uncertainties is quite reliable. Generally, we find that chiral EFT
at N3LO allows for very accurate results at energies below Elab ⇠ 100MeV and still provides accurate description of
the data at energies of the order of Elab ⇠ 200MeV. These findings are particularly promising for the ongoing studies
of the three-nucleon force whose contributions to nucleon-deuteron scattering observables are believed to increase at
energies above EN, lab ⇠ 100MeV. It would be interesting to perform a similar analysis of nucleon-deuteron scattering
data based on the improved chiral NN potentials in order to see whether accurate predictions are to be expected at
such energies at N3LO. Work along these lines is in progress.

Finally, we emphasize that our results depend little on the specific choice of the regulator function. In order to

QMC allows to propagate the theoretical uncertainty arising from the nuclear interaction to the 
response functions

 Epelbaum et al., 
arXiv:1412.0142



Chiral EFT 
Recently chiral nuclear interactions, including the      degrees of freedom have been developed
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FIG. 2. (color online). Ground-state energies and point pro-
ton radii for A = 3, 4 nuclei calculated at NLO and N2LO
(with VD2 and VE⌧ ) compared with experiment. Blue (red)
symbols correspond to R0 = 1.0 fm (R0 = 1.2 fm). The er-
rors are obtained as described in the text and also include the
GFMC statistical uncertainties.

We show the energies for R0 = 1.0 fm for the NN and
full 3N interactions. We use VD2 and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD, hence this choice of VE leads to
an equation of state identical to the equation of state
with NN + VC as in Ref. [22] (the projector P is zero
for pure neutron systems) and qualitatively similar to
previous results using chiral interactions at N2LO [32]
and N3LO [33].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n0 ⇠ 0.16 fm�3 the di↵erence of the central value of
the energy per neutron after inclusion of the 3N contacts
VE or VE⌧ is ⇠2 MeV, leading to a total error band
with a range of ⇠6.5 MeV when considering di↵erent VE

structures. This relatively large uncertainty can be quali-
tatively explained when considering the following e↵ects.
Because the expectation value h

P
i<j ⌧ i · ⌧ ji has a sign

opposite to that of the expectation value h i in 4He, cE
will also have opposite signs in the two cases to fit the
binding energy. However, in neutron matter both oper-
ators are the same, spreading the uncertainty band. A
similar argument was made in Ref. [34].
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FIG. 3. (color online). The energy per particle in neutron
matter as a function of density for the NN and full 3N inter-
actions at N2LO with R0 = 1.0 fm. We use VD2 and di↵erent
3N contact structures: the blue band corresponds to VE⌧ , the
red band to VE and the green band to VEP . The green band
coincides with the NN+2⇡-exchange-only result because both
VD and VE vanish in this case. The bands are calculated as
described in the text.

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum-space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei where the T = 3

2 triples play a
more significant role. The reason for the sizable impact
may be the regulators used here, which break the Fierz-

Neutron matter 
equation of state

Binding 

energies 

and radii
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We construct a coordinate-space chiral potential, including !-isobar intermediate states in its two-pion-
exchange component up to order Q3 (Q denotes generically the low momentum scale). The contact interactions
entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by
Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The
low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database, consisting
of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy
range 0–300 MeV. For the total 5291 pp and np data in this range, we obtain a χ2/datum of roughly 1.3 for
a set of three models characterized by long- and short-range cutoffs, RL and RS, respectively, ranging from
(RL,RS) = (1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and
two-pion exchange (contact) part of the potential.

DOI: 10.1103/PhysRevC.91.024003 PACS number(s): 13.75.Cs, 21.30.−x, 14.20.Gk, 21.45.Bc

I. INTRODUCTION

The nucleon-nucleon (NN) interaction is a basic building
block in nuclear physics as it makes it possible to describe
nuclear structure and nuclear reactions. If the forces were
known accurately and precisely, the nuclear many-body
problem would become a large-scale computation where
precision and accuracy are defined in terms of the preferred
numerical method. However, the lack of direct knowledge of
the forces among constituents at separation distances relevant
for nuclear structure and reactions drastically changes the
rules of the game. Indeed, the use of a large but finite body
of scattering data below a given maximal energy to provide
constraints on the interaction transforms the whole setup into
a statistical inference problem, based on the conventional least
χ2 method. This fact was recognized already in 1957 [1]
(see Ref. [2] for an early review) and, after many years,
culminated in the admirable Nijmegen partial wave analysis
(PWA) of 1993 [3], based on the crucial observations that
charge-dependent one-pion-exchange (CD-OPE), tiny but es-
sential electromagnetic and relativistic effects, and a judicious
selection of the scattering database could actually provide
a satisfactory fit with χ2/datum ∼ 1 for a total number
of data consisting, as of 1993, of 1787 pp and 2514 np
(normalizations included) at the 3 σ level. These criteria have
set the standard for PWA’s and the design of high quality
phenomenological potentials [4–12]. The inference point of
view is mainly phenomenological and requires a balanced
interplay between which data qualify as constraints and which
models provide the most likely description of the data. None
of these choices is free of prejudices and they are actually
intertwined—a circumstance that should be kept in mind when
assessing the reliability and predictive power of the theory

aiming at a faithful representation of the input data and their
uncertainties.

The quantum mechanical nature of the PWA with a given
cutoff in energy leads to inverse scattering ambiguities which
increase at short distances (see, for example, Refs. [13,14]
and references therein). Remarkably, a universal and model-
independent low-energy interaction arises when unobserved
high energy components above the cutoff are explicitly
integrated out of the Hilbert space preserving the scattering
amplitude [15,16]. While this Vlow−k framework is an ex-
tremely appealing setup based on Wilsonian renormalization,
to date this universal interaction has not been determined
from data directly and one has to proceed via a fitted and
bare NN interaction because off-shellness is required [17].
However, inferring an NN interaction from data, is not the full
story, and three-nucleon, and possibly higher multinucleon,
interactions are needed to describe residual contributions to
nuclear binding energies [18]. As is well known, their strength
and form are also affected by the chosen off-shell behavior
of the NN interaction and a universal Vlow−k three-nucleon
interaction remains to be found.

In an ideal situation all steps in the inference process,
including the scattering data selection itself, should be carried
out with the “true” theory, which for nuclear physics is
quantum chromodynamics (QCD), the fundamental theory of
interacting quarks and gluons. Assuming, as we do, that the
theory is correct, QCD would just tell us which experiments
are right and which are wrong, or whether the reported uncer-
tainties are realistic with a given confidence level on the side of
the experiment. At the same time one would set constraints on
the QCD parameters such as the light quark masses and $QCD,
or equivalently the pion mass mπ and the pion weak decay
constant Fπ . While there was impressive progress in bringing

0556-2813/2015/91(2)/024003(27) 024003-1 ©2015 American Physical Society



Maximum entropy algorithm 
We estimate the mean and the covariance matrix from NE Euclidean responses

Ē(⌧i) =
1

N

X

n

En(⌧i) C(⌧i, ⌧j) =
1

N(N � 1)

X

n

(Ēn(⌧i)� En(⌧i))(Ē
n(⌧j)� En(⌧j))

• The covariance matrix in general is NOT diagonal, and it is convenient to 
diagonalize it

1.4.2 Likelihood and covariance

The �2 definition of Eq. (4) is valid only in the case of uncorrelated data. In the more general
case, the �2 reads

�2 =
N⌧X

ij

(Ēi � Ei)[C
�1]ij(Ēj � Ej) (23)

with Ēi and Ei being defined in Eqs. (3) and (2). The covariance matrix can be estimated by the
set of NE Euclidean responses by

Cij =
1

NE(NE � 1)

NEX

n=1

(Ēi � En
i )(Ēj � En

j ) . (24)

In general, the covariance is not diagonal because the values of the Euclidean response at di↵erent
⌧i are correlated. In this case, the use of the chi2 of Eq. (5), where �i are obtained from the square
root go the diagonal elements of the covariance, is inappropriate.
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Figure 9: Spectrum of the covariance matrix eigenvalues obtained from NE = 50 Euclidean re-
sponses at |q| = 500 MeV

Following the procedure described in Ref. [3], we first find the transformation U that diago-
nalizes the covariance matrix

(U�1
CU)ij = �0 2

i �ij (25)

then we rotate both the data and the kernel in this diagonal representation

K

0 = U

�1
K Ē

0 = U

�1
Ē . (26)
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2

MAXIMUM ENTROPY APPROACH FOR THE INVERSION OF THE EUCLIDEAN RESPONSE

Correlated errors

We generated a set of N
E

' 2500 GFMC estimates of the Euclidean response functions, obtained from independent
imaginary-time propagations, on a grid of ⌧ points uniformly distributed between 0 to 0.05 MeV�1 with �⌧ = 0.0005
MeV�1. The estimates were each started from statistically uncorrelated sets of 20, 000 VMC configurations. Let

E
(n)
i

= E(n)(⌧
i

) be the Euclidean response function corresponding to the nth GFMC propagation. The average
Euclidean response function and covariance matrix elements are given by
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In general, the covariance matrix is non-diagonal because The GFMC errors on E
i

are strongly correlated in ⌧ , as
individual steps involve only small spatial distances and evolutions of the spin-isospin amplitudes.
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FIG. 1. Spectrum of the covariance matrix eigenvalues obtained from NE = 50 and NE = 2500 Euclidean responses at |q| = 500
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Following the procedure described in Ref. [1], we first find the transformation U that diagonalizes the covariance
matrix

(U�1CU)
ij

= �0 2
i

�
ij

(3)

then we rotate both the data and the kernel K
ij

= exp(�⌧
i

!
j

) in this diagonal representation

K0 = U�1K Ē0 = U�1Ē . (4)

The likelihood, which in general is given by
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where

E
i

=
N!X

j=1

K
ij

R
j

, (6)

• If N is not sufficiently large, 
the spectrum of the 
covariance eigenvalues 
becomes pathological.
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• We rotate both the data and the kernel in the diagonal representation of the 
covariance matrix
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= �0 2
i

�
ij

(3)

then we rotate both the data and the kernel K
ij

= exp(�⌧
i

!
j

) in this diagonal representation

K0 = U�1K Ē0 = U�1Ē . (4)

The likelihood, which in general is given by

�2 =
N⌧X

i,j=1
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E

i

� E
i
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C�1

�
ij

�
E

j

� E
j

�
, , (5)

where

E
i

=
N!X

j=1

K
ij

R
j

, (6)

1.4.2 Likelihood and covariance

The �2 definition of Eq. (4) is valid only in the case of uncorrelated data. In the more general
case, the �2 reads

�2 =
N⌧X

ij

(Ēi � Ei)[C
�1]ij(Ēj � Ej) (23)

with Ēi and Ei being defined in Eqs. (3) and (2). The covariance matrix can be estimated by the
set of NE Euclidean responses by

Cij =
1

NE(NE � 1)

NEX

n=1

(Ēi � En
i )(Ēj � En

j ) . (24)

In general, the covariance is not diagonal because the values of the Euclidean response at di↵erent
⌧i are correlated. In this case, the use of the chi2 of Eq. (5), where �i are obtained from the square
root go the diagonal elements of the covariance, is inappropriate.
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Figure 9: Spectrum of the covariance matrix eigenvalues obtained from NE = 50 Euclidean re-
sponses at |q| = 500 MeV

Following the procedure described in Ref. [3], we first find the transformation U that diago-
nalizes the covariance matrix

(U�1
CU)ij = �0 2

i �ij (25)

then we rotate both the data and the kernel in this diagonal representation

K

0 = U

�1
K Ē

0 = U

�1
Ē . (26)
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• The likelihood can be written in terms of the statistically independent 
measurements and the rotated kernel
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can written in terms of the statistically independent measurement Ē0 and the rotated kernel,

�2 =
1

N
⌧

X

i

(
P

j

K 0
ij

R
j

� Ē0
i

)2

�0 2
i

. (7)

To simplify the notation, from now on we assume that the data and the kernel are rotated, so that the prime is
understood.

It has to be remarked that if N
E

is not large enough, the covariance and its spectrum of eigenvalues are likely to
show a pathological behavior. When diagonalizing the covariance matrix, N

⌧

independent eigenvectors are found,
provided that there are su�cient data to determine them. The empirical rule to get a well behaved spectrum is to
consider at least N

E

= 2N
⌧

independent estimates of the Euclidean response function [1]. As shown in Fig. 1, if such
requirement is not fulfilled, the spectrum of the eigenvalues of the covariance matrix displays a sharp break.

The algorithm

The key point in the inversion of the Laplace transform resides in the minimization of Q[R] = ↵S[R] � �2[R]/2.
We adopted the so called “Bryan algorithm” [2], the first step of which consists in performing the singular value
decomposition (SVD) of the kernel

K = V⌃UT . (8)

In the above equation, U and V are N
⌧

⇥ N
⌧

and N
!

⇥ N
!

orthogonal matrices, while ⌃ is a N
⌧

⇥ N
!

diagonal
matrix. The smallest element on the diagonal are essentially zero for the numerical precision of the computer, since
the kernel is e↵ectively singular. Within Bryan algorithm, only the N

s

diagonal elements of ⌃ which are larger than
the numerical precision of the machine are considered, while the other are disregarded. Hence, only the first N

s

column of U are relevant for representing the kernel. Moreover, because

KT

ij

=
NsX

k=1

U
ik

V T

kj

, (9)

the vector space spanned by the column of KT is the same as the space spanned by the column of U. Since the
gradient of the likelihood lies is defined by the columns of KT ,
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all the search directions for the minimum are spanned, within machine precision, by the first N
s

columns of U. Bryan
called this reduced space the singular space.

In the singular space, the extreme condition for Q[R] reads
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and the solution can be represented in terms of the vector u

ln
⇣R

i

M
i

⌘
= KT

ij

u
j

. (12)

Since only the first N
s

elements of ⌃ are di↵erent from zero, not all the components of u are independent. However,
since, as shown above, KT and U belong to the same vector space and since most of the relevant search directions lie
in the singular space, Bryan proposed the solution to be written in the form

R
i

= M
i

exp
⇣ NsX

j=1

U
ij

u
j

⌘
. (13)

Hence, to the machine-precision level, the most general solution of Eq. (11) only depends on the N
s

coordinates of u.
Searching the global maximum of Q[R] in the N

s

-dimensional singular space is computationally much less demanding
than in the full N

!

-dimensional space and can be performed by a straightforward Newton-Marquardt method.



Maximum entropy algorithm 
Maximum entropy approach can be justified on the basis of Bayesian inference. 
The best solution will be the one that maximizes the conditional probability
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Figure 8: Normalized tranverse response function extracted from the GFMC Euclidean response
by artificially increasing �Ē. Saclay data are also shown.

shown above have been obtained by averaging over many of these response functions. However,
there are other criteria to establish which is the best response function we can extract from Monte
Carlo data.

In this Section, I will report on the very promising results that have been obtained implementing
the Maximum Entropy method. In the following I will outline the main features of the method, for
further details, see the excellent Refs. [1, 3]. Within this approach, based on Bayesian statistical
inference, the “most probable” response function is the one that will be selected.

1.4.1 Bayesian inference

The non negativity and the normalizability of R(!), allow us to interpret it as a probability
function and to use the principle of maximum entropy, in conjunction with the Bayesian methods.
To phrase the problem in terms of Bayesian approach, our events are the functions R(!) and Ē(⌧).
The best solution R̃(!) will be the one that maximize Pr[R|Ē], i.e. the conditional probability of
R given Ē. Using Bayes theorem, we get

Pr[R|Ē] =
Pr[Ē|R]Pr[R]

Pr[Ē]
, (7)

where Pr[R|Ē] is called the posterior probability, Pr[Ē|R] the likelihood function, Pr[R] the prior
probability, and Pr[Ē] the evidence. It can be easily shown that the evidence is nothing but a
normalization constant, only depending on the likelihood function and the prior probability

Pr[Ē] =

Z
DRPr[Ē|R]Pr[R] . (8)
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shown above have been obtained by averaging over many of these response functions. However,
there are other criteria to establish which is the best response function we can extract from Monte
Carlo data.

In this Section, I will report on the very promising results that have been obtained implementing
the Maximum Entropy method. In the following I will outline the main features of the method, for
further details, see the excellent Refs. [1, 3]. Within this approach, based on Bayesian statistical
inference, the “most probable” response function is the one that will be selected.

1.4.1 Bayesian inference

The non negativity and the normalizability of R(!), allow us to interpret it as a probability
function and to use the principle of maximum entropy, in conjunction with the Bayesian methods.
To phrase the problem in terms of Bayesian approach, our events are the functions R(!) and Ē(⌧).
The best solution R̃(!) will be the one that maximize Pr[R|Ē], i.e. the conditional probability of
R given Ē. Using Bayes theorem, we get

Pr[R|Ē] =
Pr[Ē|R]Pr[R]

Pr[Ē]
, (7)

where Pr[R|Ē] is called the posterior probability, Pr[Ē|R] the likelihood function, Pr[R] the prior
probability, and Pr[Ē] the evidence. It can be easily shown that the evidence is nothing but a
normalization constant, only depending on the likelihood function and the prior probability

Pr[Ē] =

Z
DRPr[Ē|R]Pr[R] . (8)
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Limiting ourselves to the minimization of the    , we implicitly make the assumption 
that the prior probability is important or unknown.

�2

• When the number of measurements becomes large, the asymptotic limit of the 
likelihood function is
When the number of measurements becomes large, by central limit arguments, the asymptotic

limit of the likelihood function is

Pr[Ē|R] =
1

Z1
e�L[R] =

1

Z1
e�

1
2�

2[R] (9)

where the normalization factor is given by

Z1 =

Z
DĒe��2[R]/2 . (10)

Thus, maximizing the likelihood is equivalent to minimizing the �2. However, by limiting our-
selves to the minimization of the �2, we implicitly make the assumption that the prior probability
is important or unknown. On the other hand, we have some information on the asymptotic limit
of R(!) that we would like to include. Also, since the spectral function is a nonnegative and
normalizable function, it can be interpreted as still another probability function. The principle of

maximum entropy states that the values of a probability function are to be assigned by maximizing
the entropy expression

S[R] ⌘ �
Z

d!(R(!)�D(!)�R(!) ln[R(!)/D(!)]) , (11)

where the function D(!) is called the default model. It is worth mentioning that the above
expression is applicable even when R(!) and D(!) have di↵erent normalization. The entropy
measures how much the response function di↵ers from the model. When A(!) 6= D(!), S[R] is
negative and t has maximum value of zero when R(!) = D(!). What the maximum entropy
method add to the simple minimization of the �2 is simply to use the prior information that the
spectral function can be interpreted as a probability function. For further details on this, please
read the nice kangaroo argument of Ref. [2].

In the limit case, of no data, or with the lack of information about the likelihood function, the
posterior probability is proportional to the prior probability

Pr[R|Ē] / Pr[R] . (12)

Hence, maximizing the posterior probability in absence of data is the same as maximizing S[R]
when

Pr[R] =
1

Z2
e↵S[R] . (13)

where the normalization constant Z2 is given by

Z2 =

Z
DRe↵S[R] . (14)

Therefore, the posterior probability can be rewritten as

Pr[R|Ē] =
e�Q[R]

Z1Z2Pr[Ē]
(15)
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In terms of the statistically independent measurement Ē 0 and the rotated kernel, the likelihood
can be written as

�2 =
1

N⌧
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j K
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ijRj � Ē 0

i)
2

�0 2
i

, (27)

If there the set of Euclidean responses is not large enough, the covariance and its spectrum
of eigenvalues can become pathological. When diagonalizing, we are asking for N⌧ independent
eigenvectors, so we should have enough data do determine these directions, so that NE > N⌧ .
Since in our case we have NE = 50 and N⌧ = 100, our original spectrum, represented by the red
filled circles of Fig. 9, displays a sharp break.

The empirical rule to get a non pathological spectrum is to have NE > 2N⌧ . Instead of
computing more Euclidean responses, I decided to consider only one ⌧i every three, so thatN⌧ = 33.
The covariance eigenvalues spectrum is in this case regular, as shown by the black point of Fig. 9.
During the weekend, I will compute ten additional Euclidean responses, in order to be able to use
more imaginary time points.

To simplify the notation, from now on we assume that the data and the kernel are rotated, so
that the prime is understood.

1.4.3 The algorithm

The key point in the inversion of the Laplace transform resides in the minimization of Q[R],
defined in Eq. (16) Typical algorithm, like the simulated annealing I reported on in the previous
section, search for an optimal R(!) in the entire space of Ri, In his algorithm, Bryan first perform
a singular value decomposition (SVD) of the kernel (again, all quantities are now rotated, the
prime is understood)

K = V⌃U

T . (28)

In the above equation, U and V are N⌧ ⇥ N⌧ and N! ⇥ N! orthogonal matrices, while ⌃ is
a N⌧ ⇥ N! diagonal matrix. The smallest element on the diagonal are essentially zero for the
numerical precision of the computer, since the kernel is e↵ectively singular. If we order the diagonal
elements of ⌃, from the largest to the smallest, Bryan algorithm only consider the first Ns, that
are larger than the precision of the machine, disregarding the others.

Therefore, only the first Ns column of U are relevant for representing the kernel. Moreover,
because

KT
ij =

NsX

k=1

UikV
T
kj , (29)

the vector space spanned by the column of KT is the same as the space spanned by the column of
U. Since the gradient of the likelihood lies is defined by the columns of KT ,
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. (30)

11



Maximum entropy algorithm 
Since the response function is nonnegative and normalizable, it can be interpreted 
as a probability distribution function.

The principle of maximum entropy states that the values of a probability function 
are to be assigned by maximizing the entropy expression
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DĒe��2[R]/2 . (10)

Thus, maximizing the likelihood is equivalent to minimizing the �2. However, by limiting our-
selves to the minimization of the �2, we implicitly make the assumption that the prior probability
is important or unknown. On the other hand, we have some information on the asymptotic limit
of R(!) that we would like to include. Also, since the spectral function is a nonnegative and
normalizable function, it can be interpreted as still another probability function. The principle of

maximum entropy states that the values of a probability function are to be assigned by maximizing
the entropy expression

S[R] ⌘ �
Z

d!(R(!)�D(!)�R(!) ln[R(!)/D(!)]) , (11)

where the function D(!) is called the default model. It is worth mentioning that the above
expression is applicable even when R(!) and D(!) have di↵erent normalization. The entropy
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with

Q[R] ⌘ 1

2
�2[R]� ↵S[R] , (16)

↵ being a regularization parameter. Thus, the maximization of the posterior probability corre-
sponds to the minimization of Q[R]. The results, however, will depend on ↵. In the limit ↵ ! 1,
the spectrum minimizing Q[R] is the default model D(!), while for ↵ ! 0 the least-squares fit is
regained. In what is often denoted as historic maximum entropy, ↵ is adjusted to make �2 = 1.
This choice is the expected value of �2 when the errors are Gaussian noise, but is otherwise ad

hoc. Bayes statistical inference provides the necessary tools to eliminate the free parameter ↵. Eq.
(7) can be rewritten explicitly including ↵

Pr[R,↵|Ē] =
Pr[Ē|R,↵]Pr[R,↵]

Pr[Ē]
, (17)

By applying Bayes’s theorem to factorize the joint probability Pr[R,↵], it turns out that

Pr[R,↵|Ē] =
Pr[↵]Pr[Ē|R,↵]Pr[R|↵]

Pr[Ē]
. (18)

Hence, integrating over ↵, the following relation for the posterior probability Pr[↵, Ē] can be found

Pr[↵, Ē] =
Pr[↵]

Z1Z2Pr[Ē]

Z
DRe�Q[R] . (19)

To derive the previous equation, we have identified Pr[Ē|R,↵] / exp(��[R]2/2) and Pr[R|↵] /
exp(↵S[R]), while the evidence

Pr[Ē] =

Z
d↵Pr[↵]

R
DRe�Q[R]

Z1Z2
(20)

is an ↵-independent normalization constant. The only unknown quantity in these equations is
Pr[↵], the prior probability of ↵. In the literature (and in the code I have), it is either taken to
be constant or to be the Je↵reys prior 1/↵. However, the choice of Pr[↵] has little influence on
the reconstructed spectra.

In the classical maximum entropy approach, one calculates ↵̂ as the ↵ that maximizes Pr[↵, Ē]
and takes the corresponding R̂↵̂ as the final result for the response function. This method relies
on the assumption that Pr[↵|Ē] is sharply peaked, which is not always the case. To overcome this
di�culty, Bryan’s method can be adopted, where ↵ is addressed by marginalization. In Bryan’s
method, for each ↵ we find R̂↵ that satisfies

�Q[R]

�↵

���
R=R̂↵

= 0 . (21)

Then we choose as the final result for the response function the average R̄(!) defined by

R̄(!) ⌘
Z

d↵R̂↵(!)Pr[↵|Ē] , (22)

where Pr[↵|Ē] is given by Eq. (19).
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4He electromagnetic response 

q=700 MeV

The enhancement is driven by process involving one-pion exchange and the 
excitation of the Delta degrees of freedom 



Nuclear correlations 

• Even in neutron-rich nuclei, protons 
have a greater probability than neutrons 
to have momentum larger than the Fermi 
momentum.

Science 346, 614 (2014) 

• Nuclear interaction creates short-range 
correlated pairs of unlike fermions with 
large relative momentum and pushes 
fermions from low momenta to high 
momenta creating a “high-momentum tail.”

nuclei. This backward peak is a strong signature
of SRC pairs, indicating that the two emitted
protons were largely back-to-back in the initial
state, having a large relative momentum and a
small center-of-mass momentum (8, 9). This is a
direct observation of proton-proton (pp) SRC
pairs in a nucleus heavier than 12C.
Electron scattering fromhigh–missing-momentum

protons is dominated by scattering from protons
in SRC pairs (9). The measured single-proton
knockout (e,e′p) cross section (where e denotes
the incoming electron, e′ the measured scattered
electron, and p the measured knocked-out pro-
ton) is sensitive to the number of pp and np SRC
pairs in the nucleus, whereas the two-proton
knockout (e,e′pp) cross section is only sensitive to
the number of pp-SRC pairs. Very few of the
single-proton knockout events also contained a
second proton; therefore, there are very few
pp pairs, and the knocked-out protons predom-
inantly originated from np pairs.
To quantify this, we extracted the [A(e,e′pp)/

A(e,e′p)]/[12C(e,e′pp)/12C(e,e′p)] cross-section dou-
ble ratio for nucleus A relative to 12C. The double
ratio is sensitive to the ratio of np-to-pp SRC
pairs in the two nuclei (16). Previous measure-
ments have shown that in 12C nearly every high-
momentum proton (k > 300 MeV/c > kF) has a
correlated partner nucleon, with np pairs out-
numbering pp pairs by a factor of ~20 (8, 9).
To estimate the effects of final-state interac-

tions (reinteraction of the outgoing nucleons in
the nucleus), we calculated attenuation factors
for the outgoing protons and the probability of
the electron scattering from a neutron in an np
pair, followed by a neutron-proton single-charge
exchange (SCX) reaction leading to two outgoing
protons. These correction factors are calculated
as in (9) using the Glauber approximation (22)
with effective cross sections that reproduce pre-
viously measured proton transparencies (23), and
using themeasured SCX cross section of (24).We
extracted the cross-section ratios and deduced the
relative pair fractions from the measured yields
following (21); see (16) for details.
Figure 3 shows the extracted fractions of np

and pp SRC pairs from the sum of pp and np
pairs in nuclei, including all statistical, systematic,
and model uncertainties. Our measurements are
not sensitive to neutron-neutron SRC pairs. How-
ever, by a simple combinatoric argument, even in
208Pb these would be only (N/Z)2 ~ 2 times the
number of pp pairs. Thus, np-SRC pairs domi-
nate in all measured nuclei, including neutron-
rich imbalanced ones.

The observed dominance of np-over-pp pairs
implies that even in heavy nuclei, SRC pairs are
dominantly in a spin-triplet state (spin 1, isospin
0), a consequence of the tensor part of the nucleon-
nucleon interaction (17, 18). It also implies that
there are as many high-momentum protons as
neutrons (Fig. 1) so that the fraction of protons
above the Fermi momentum is greater than that
of neutrons in neutron-rich nuclei (25).
In light imbalanced nuclei (A≤ 12), variational

Monte Carlo calculations (26) show that this re-
sults in a greater average momentum for the
minority component (see table S1). The minority
component can also have a greater average mo-
mentum in heavy nuclei if the Fermimomenta of
protons and neutrons are not too dissimilar. For
heavy nuclei, an np-dominance toy model that
quantitatively describes the features of the mo-
mentum distribution shown in Fig. 1 shows that
in imbalanced nuclei, the average proton kinetic
energy is greater than that of the neutron, up to
~20% in 208Pb (16).
The observed np-dominance of SRC pairs in

heavy imbalanced nuclei may have wide-ranging
implications. Neutrino scattering from two nu-
cleon currents and SRC pairs is important for the
analysis of neutrino-nucleus reactions, which are
used to study the nature of the electro-weak in-
teraction (27–29). In particle physics, the distribu-
tion of quarks in these high-momentum nucleons
in SRC pairs might be modified from that of free
nucleons (30, 31). Because each proton has a
greater probability to be in a SRC pair than a
neutron and the proton has two u quarks for
each d quark, the u-quark distribution modifica-
tion could be greater than that of the d quarks
(19, 30). This could explain the difference be-
tween the weak mixing angle measured on an
iron target by the NuTeV experiment and that of
the Standard Model of particle physics (32–34).
In astrophysics, the nuclear symmetry energy

is important for various systems, including neu-
tron stars, the neutronization of matter in core-
collapse supernovae, and r-process nucleosynthesis
(35). The decomposition of the symmetry energy
at saturation density (r0 ≈ 0.17 fm−3, the max-
imum density of normal nuclei) into its kinetic
and potential parts and its value at supranuclear
densities (r > r0) are notwell constrained, largely
because of the uncertainties in the tensor com-
ponent of the nucleon-nucleon interaction (36–39).
Although at supranuclear densities other effects
are relevant, the inclusion of high-momentum
tails, dominated by tensor-force–induced np-SRC
pairs, can notably soften the nuclear symmetry

energy (36–39). Our measurements of np-SRC
pair dominance in heavy imbalanced nuclei can
help constrain the nuclear aspects of these cal-
culations at saturation density.
Based on our results in the nuclear system, we

suggest extending the previous measurements of
Tan’s contact in balanced ultracold atomic gases
to imbalanced systems in which the number of
atoms in the two spin states is different. The
large experimental flexibility of these systems will
allow observing dependence of the momentum-
sharing inversion on the asymmetry, density,
and strength of the short-range interaction.
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Fig. 3. The extracted
fractions of np (top)
and pp (bottom) SRC
pairs from the sum of
pp and np pairs in
nuclei.The green and
yellow bands reflect
68 and 95% confidence
levels (CLs), respec-
tively (9). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.
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• Like in a dance party with a majority of 
girls, where boy-girl interactions will make 
the average boy dance more than the 
average girl

tail with equal numbers of majority and minority
fermions, thereby leaving a larger fraction of majo-
rity fermions in low-momentumstates (k< kF) (see
Fig. 1). In neutron-rich nuclei, this increases the
average protonmomentumandmay even result in
protons having higher average momentum than
neutrons, inverting the momentum sharing in im-
balanced nuclei from that in noninteracting sys-
tems. Theoretically, this can happen because of
the tensor part of the nucleon-nucleon interac-
tion, which creates predominantly spin-1, isospin-
0 neutron-proton (np) SRC pairs (17, 18).

Here we identify SRC pairs in the high-
momentum tail of nuclei heavier than carbonwith
more neutrons (N) than protons (Z) (i.e., N > Z).
The data show the universal nature of SRC pairs,
which even in lead (N/Z = 126/82) are still pre-
dominantly np pairs. This np-pair dominance
causes a greater fraction of protons than neutrons
to have high momentum in neutron-rich nuclei.
The data presented here were collected in 2004

in Hall B of the Thomas Jefferson National Ac-
celerator Facility using a 5.014-GeV electron beam
incident on 12C, 27Al, 56Fe, and 208Pb targets. We

measured electron-induced two-proton knockout
reactions (Fig. 2). The CEBAF Large Acceptance
Spectrometer (CLAS) (20) was used to detect the
scattered electron and emitted protons. CLAS uses
a toroidal magnetic field and six independent
sets of drift chambers, time-of-flight scintillation
counters, Cerenkov counters, and electromag-
netic calorimeters for charged-particle identifi-
cation and trajectory reconstruction (Fig. 2) (16).
We selected events in which the electron in-

teracts with a single fast proton from an SRC pair
in the nucleus (9, 16) by requiring a large four-
momentumtransferQ2 ¼ q→2−ðw=cÞ2 > 1:5 GeV2/c2

[where q→ and w are the three-momentum and
energy, respectively, transferred to the nucleus
and c is the speed of light] and Bjorken scaling
parameter xB ¼ Q2=ð2mN ⋅ wÞ > 1:2 (wheremN

is the nucleonmass). To ensure selection of events
in which the knocked-out proton belonged to
an SRC pair, we further required missing mo-
mentum 300 < jp→missj < 600 MeV/c, where
p→miss ¼ p→p − q→ with p→p the measured proton
momentum. We suppressed contributions from
inelastic excitations of the struck nucleon by lim-
iting the reconstructed missing mass of the two-
nucleon systemmmiss < 1.1 GeV/c2. In each event,
the leading proton that absorbed the transferred
momentum was identified by requiring that its
momentum p→p is within 25° of q→ and that
jp→pj=jq

→j ≥ 0:6 (16, 21).
When a second proton was detected with mo-

mentum greater than 350 MeV/c, it was emitted
almost diametrically opposite to p→miss (see fig. S19).
The observed backward-peaked angular distribu-
tions are very similar for all four measured
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Fig. 2. Illustration of the CLAS detector with
a reconstructed two-proton knockout event.
For clarity, not all CLAS detectors and sectors
are shown.The inset shows the reaction in which
an incident electron scatters fromaproton-proton
pair via the exchange of a virtual photon. The
human figure is shown for scale.

Fig. 1. Schematic
representation
of the momentum
distribution, n(k), of
two-component
imbalanced Fermi
systems. Red and blue
dashed lines show the
noninteracting system,
whereas the solid
lines show the effect of
including a short-range
interaction between
different fermions.
Such interactions create
a high-momentum tail
(k > kF, where kF is the
Fermi momentum of
the system). This is
analogous to a dance
party with a majority of girls, where boy-girl interactions will make the average boy dance more than the
average girl.
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