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Dynamical Response of Quantum many–body systems using
Integral Transform techniques

Integral Transforms
Dynamical Response Function
Monte Carlo and Laplace transform
A new transform
Applications and perspectives
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Integral Transform Techniques

An Integral Transform maps the original problem in a new domain where
it’s simpler to solve it

T (y) =

∫

X
K (x , y) S(x) dx

Accessible object
Object of interest

The solution is then mapped back using the inverse transform.

PROBLEM
The inverse transform is a so–called Ill-Posed Problem!
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Our object of interest: Dynamics of Quantum systems

R(ω) =
∑

ν

|〈Ψν |Ô|Ψ0〉|2δ (ω − (Eν − E0))

= 〈Ψ0|Ô†δ
(
ω − (Ĥ − E0)

)
Ô|Ψ0〉

Or considering an IT [Efros,Leidemann,Orlandini,Phys.Lett.B 338,130]:

Φ(σ) =

∫
K (σ, ω)R(ω)dω

A good kernel K should be one such that:

the transform Φ(σ) is easy to calculate (in QMC)
the inversion of the transform can be made stable
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Integral kernels - Laplace

In QMC methods we routinely use the imaginary-time propagator

e−τ Ĥ |φ〉 =
∞∑

n=0

e−τEn〈Ψn|φ〉|Ψn〉 τ→∞−−−→ e−τE0〈Ψ0|φ〉|Ψ0〉

In this framework it is natural to consider the Laplace kernel:

K (σ, ω) = e−σω

The transform becomes an imaginary-time correlation function:

Φ(σ) = 〈Ψ0|Ô†e−σĤÔ|Ψ0〉 = 〈Ψ0|Ô†(0)Ô(σ)|Ψ0〉.
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e−τ Ĥ |φ〉 =
∞∑

n=0

e−τEn〈Ψn|φ〉|Ψn〉 τ→∞−−−→ e−τE0〈Ψ0|φ〉|Ψ0〉

In this framework it is natural to consider the Laplace kernel:

K (σ, ω) = e−σω

The transform becomes an imaginary-time correlation function:
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Integral kernels - Laplace

L(σ) =

∫
K (σ, ω)R(ω)dω =

∫ ∞

0
e−σω R(ω)dω
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we have access only to a NOISY version of L(σ)
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Integral kernels - Gaussian

G (σ, β) =

∫
K (σ, ω, β)R(ω)dω =

∫ ∞

0
e−

(σ−ω)2

2β R(ω)dω

We have now one more parameter: β.
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β =0.2

The transform G (σ) is a smoothened version of the original signal!
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we can’t use Gaussian (or Lorentzian) in QMC

but we have found a viable kernel



Integral Kernels - Laplace-like

We now want to build an integral kernel which can be calculated in QMC
methods and that has the desired "bell–shaped" form.

K (σ, ω,N) =
1
σ

(
e− ln(2)ω

σ − e−2 ln(2)ω
σ

)N
=

1
σ

N∑

k=0

(
N
k

)
(−)ke− ln(2)(N+k)ω

σ

As N →∞ the kernel width becomes smaller and smaller
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Recap of the idea

take Laplace transform:

L(τ) =

∫
KL(ω, τ)R(ω)dω

build the new transform:

Φ(σ,N) =
N∑

j

cj ,N L
(aj ,N
τ

)

=

∫
Knew (ω, σ,N)R(ω)dω

invert the final transform:

R(ω) =

∫
K−1
new (ω, σ,N)Φ(σ,N)dσ

=

∫
K−1
L (ω, τ)L(τ)dτ
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Density response of superfluid He4

[A. R., F. Pederiva and G. Orlandini, PRB 88,094302 (2013)]
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Conclusions

Pro
may control stability of the inversion by tuning kernel function
we need just imaginary-time correlation functions

Con
for high accuracy, extremely long imaginary-time intervals have to be
considered (computationally heavy)
the inversion procedure can still introduce uncontrollable errors
−→ try with different Kernels ( e.g. Gaussian [see next part] )
−→ check different inversion schemes (e.g. GIFT [E.Vitali et al.])
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Future perspectives

Inversion of the IT remains an Ill–Posed problem, can we avoid it?

ground–state MC: e−τ Ĥ |Φ0〉 τ→∞−−−→ c0|Ψ0〉

excited–state MC: e−τ(Ĥ−Ek)
2

|Φ0〉 τ→∞−−−→
∑

i

δ(Ei − Ek)ci |Ψi 〉 ∝|Ψk〉

K (Ek , Ĥ,N)|Φ0〉 N→∞−−−−→
∑

i

δ(Ei − Ek)c̃i |Ψi 〉 ∝|Ψk〉
4

conditioned and numerically stable fourier transform in
the presence of noisy data. Spectral density functions,
such as the density of states for extended systems, are
then defined in the Lehmann representation[28] as

A−(i, j, ω) = − 1

π
"[G−(i, j, ω)] (8)

=
1

π

∑

n

〈ΨN
0 |a†

i |ΨN−1
n 〉δ〈ΨN−1

n |aj |ΨN
0 〉

(ω − EN−1
n + EN

0 )2 + δ2
,(9)

which in the small δ limit tends to

A−(i, j, ω) =
∑

n

〈ΨN
0 |a†

i |ΨN−1
n 〉〈ΨN−1

n |aj |ΨN
0 〉×

δ(ω − (EN−1
n − EN

0 )), (10)

where δ in the above equation represents the dirac-delta
function.

Assuming A = 1, application of the propagator in
Eq. (1) for a time β2 = 1

2δ2 will result in the wavefunction

C(β2) = e− 1
2δ2 (H−S)2 |ψT〉, (11)

which when applied to an initial wavefunction |ψT〉 =
aj |Ψ0〉 obtained from the ground-state dynamic, and

then projected onto β√
π
〈Ψ0|a†

i will result in the distri-

bution

f(i, j, ω) =
1√
2πδ

∑

n

〈ΨN
0 |a†

i |ΨN−1
n 〉〈ΨN−1

n |aj |ΨN
0 〉×

e− 1
2δ2 (ω−EN−1

n +EN
0 )2 (12)

for S = ω + EN
0 . This will tend to the spectral function

given in Eq. (10) in the large β limit. The real parts of
the Green’s function can then by obtained if needed from
the Kramers-Kronig relation[25]. We note that a related
Green’s function can be obtained directly by integrating
Eq. (11) over β, with the addition of the small imaginary
component δ to the dynamic. Unfortunately however,
this integral is only convergent for (ω−EN−1

n +EN
0 ) > δ,

and so the FCIQMC calculation will blow up at the poles.
In systems with a continuous spectra, this would not be
appropriate, and so we do not pursue this approach here.
Results from a pilot investigation of the beryllium dimer
in a cc-pVDZ basis, where the exact Green’s function can
be obtained from complete diagonalization, are shown in
Fig. 3.

In order to reduce the statistical error, it may be nec-
essary to average over a small number of independent
calculations at each frequency, and this can be combined
with an elimination of the bias derived from choosing a
correlated sample of 〈Ψ0|a†

i and aj |Ψ0〉 [3], by taking the
Ψ0 samples on each side of Eq. (12) from different snap-
shots in imaginary time. In addition, by storing multiple
wavefunctions of the type 〈Ψ0|a†

i at the same time, all
M2 single-particle Green’s functions can be calculated

FIG. 3: High energy window of the spectral function
A−(1, 1, ω) for exact propagation with δ = 0.0141Eh, and
stochastic evaluation via FCIQMC for an equivalent time
β = 50a.u. for frozen-core Be2 in a cc-pVDZ basis at 2.5Å .
Vertical lines indicate the difference between the ground state
energy and the eigenvalues of the N-1 system symmetry con-
nected in G−(1, 1, ω), although some are coupled too weakly
to contribute significantly to the spectral function. Approx-
imately 10 independent calculations at each value of ω were
averaged to obtain the errorbars.

at a cost of O[M ] FCIQMC calculations per frequency
point, without the expectation of any variation in accu-
racy between high and low energy regimes.

However, despite modest successes, it is clear that ob-
taining converged results through the use of this operator
is substantially more difficult than with the ground state
projection. This is mainly due to an additional factor of
(τ∆E)−1 in the number of iterations required to project
out undesired states with energy gap ∆E for comparable
accuracy to the ground state propagation. The result is
that while in the ground state propagation excited states
were filtered relatively quickly with only isolated conver-
gence issues in the case of near degeneracy[16], the num-
ber of iterations required for excited state propagation
are substantially increased, as well as the dynamic being
less well-conditioned with respect to walker fluctuations.
This is also exacerbated by a generally more multicon-
figurational wavefunction which increases random error
in the projected energy estimator[14]. A more judicious
choice of orbital basis and initial conditions optimized
for the state of interest, as well as a multireference pro-
jected energy formulation[18] would ameliorate many of
these issues. In addition, there is the possibility of pre-
conditioning techniques familiar from iterative diagonal-
ization methods[29] being transferred into the stochastic
dynamic, as well other operators, such as e−β|H|, which

Expand gaussian for τ → 0:

e−τ(Ĥ−Ek)
2

≈ 1− τ
(
Ĥ − Ek

)2

Booth & Chan, J.C.P. 137,191102 (2012)
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Monte Carlo simulations for χ-EFT interactions

Chiral-EFT interactions
Dealing with non–localities with QMC
Applications to neutron matter
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Chiral Effective Field Theory (χ-EFT) interactions

pions interact weakly at small energies (Goldstone bosons)
low-scales Q, mπ high-scales mρ,Λχ = m∆ −mN

expand the interaction in powers of Q/Λχ, mπ/Λχ

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/⇤�)
0

NLO

(Q/⇤�)
2

NNLO

(Q/⇤�)
3

N3LO

(Q/⇤�)
4

Figure 1: Hierarchy of nuclear forces in ChPT. Solid lines represent nucleons and dashed lines pions. Small dots, large solid
dots, solid squares, and solid diamonds denote vertices of index � = 0, 1, 2, and 4, respectively. Further explanations are
given in the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are created
on an equal footing and emerge in increasing number as we go to higher and higher orders. At NNLO, the
first set of nonvanishing three-nucleon forces (3NF) occur [70, 71], cf. column ‘3N Force’ of Fig. 1. In fact, at
the previous order, NLO, irreducible 3N graphs appear already, however, it has been shown by Weinberg [52]
and others [70, 127, 128] that these diagrams all cancel. Since nonvanishing 3NF contributions happen first
at order (Q/⇤�)3, they are very weak as compared to 2NF which start at (Q/⇤�)0.

More 2PE is produced at ⌫ = 4, next-to-next-to-next-to-leading order (N3LO), of which we show only
a few symbolic diagrams in Fig. 1. Two-loop 2PE graphs show up for the first time and so does three-pion
exchange (3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [57, 58].
Most importantly, 15 new contact terms ⇠ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due to
the increased number of contact terms, a quantitative description of the two-nucleon interaction up to about
300 MeV lab. energy is possible, at N3LO (for details, see below). Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading 3NF,
4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically known
fact that 2NF � 3NF � 4NF . . . .

4. Two-nucleon interactions

The last section was just an overview. In this section, we will fill in all the details involved in the ChPT
development of the NN interaction; and 3NF and 4NF will be discussed in Section 5. We start by talking

19

R. Machleidt, D. R. Entem,
Phys.Rept 503,1 (2011)

short range contact–interaction + pions
many–body forces treated in a
systematic way

non–local in coordinate–space (≥NLO)

V (x , y) 6= V (x)δ(x − y)

Locality is needed for conventional QMC
Gezerlis et al., PRL 111, 032501 (2013)
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many–body forces treated in a
systematic way
non–local in coordinate–space (≥NLO)

V (x , y) 6= V (x)δ(x − y)

Locality is needed for conventional QMC
Gezerlis et al., PRL 111, 032501 (2013)
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Monte Carlo methods

Use a projection operator to filter the ground–state

P[Ĥ]|Ψn〉 = |Ψn+1〉 | lim
n→∞

P[Ĥ]n|ΦT 〉 = |0〉

eg. Pa[Ĥ] = 1−∆τ Ĥ or Pb[Ĥ] = e−∆τ Ĥ

the projection is performed stochastically.

The Standard Way
work in coordinate–space
for local interactions the projector factors in

〈Y |e−∆τ Ĥ |X 〉 =〈Y |e−∆τ T̂ |X 〉e−∆τV (X ) + O(∆τ2)

≈G0(Y ,X )B(X )
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Monte Carlo methods

Use a projection operator to filter the ground–state

P[Ĥ]|Ψn〉 = |Ψn+1〉 | lim
n→∞

P[Ĥ]n|ΦT 〉 = |0〉

eg. Pa[Ĥ] = 1−∆τ Ĥ or Pb[Ĥ] = e−∆τ Ĥ

the projection is performed stochastically.

The Standard Way
work in coordinate–space
for non–local interactions the projector doesn’t factor

〈Y |e−∆τ Ĥ |X 〉 =

∫
dZ 〈Y |e−∆τ T̂ |Z 〉〈Z |e−∆τ V̂ |X 〉+ O(∆τ2)

≈
∫

dZG0(Y ,Z )GV (Z ,X )
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Finite basis version

Ĥ =
Ω∑

a

εaâ
†
aâa +

1
2

Ω∑

ijkl

Vijkl â
†
i â
†
j âk âl + . . .

Direct Diagonalization possible only for small systems
A general Vijkl leads to non–local interactions

The Finite Basis Way
work in occupation number basis: |n〉 = |. . . 01100010 . . . 〉
for any interaction the projector can be written as

〈m|P̂|n〉 =

(
〈m|P̂|n〉∑
m〈m|P̂|n〉

)(∑

m

〈m|P̂|n〉
)

= p(m,n)w(n)
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for any interaction the projector can be written as

〈m|P̂|n〉 =

(
〈m|P̂|n〉∑
m〈m|P̂|n〉

)(∑

m

〈m|P̂|n〉
)

= p(m,n) w(n)

We can use Coupled–Cluster theory to circumvent the sign–problem
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Single–particle basis for bulk systems

single–particle space S =
{
plane waves | k2 <= k2

max

}
⊗ {S , I}

Coulomb gas −→ good agreement with R–space QMC calculations

[A. R., A. Mukherjee and F. Pederiva, PRB 88,115138 (2013)]
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Neutron Matter with χ-EFT interactions at N2LO

Equation of State
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Neutron Matter with χ-EFT interactions at N2LO

Nucleon chemical potential

0 0.05 0.1 0.15 0.2

ρ (fm
-3

)

0

10

20

30

40

µ
n

 (M
e

V
)

-120

-80

-40

0
µ

p
 (

M
e

V
)

[A. R., A. Mukherjee and F. Pederiva, PRL 112, 221103 (2014)]

Alessandro Roggero (UW & INT) Elba - 1 July, 2016 20 / 21



Conclusions

Summary:
we have developed a MC method that works for general interactions
providing rigourus upper–bounds on energy
the use of Coupled Cluster Wave–functions serves a dual pourpose:

extremely good guiding wave–function
provides variational energies for CC solutions

Current & Future work:
extension to finite systems
solving sign-problem with cancellation (à la FCI-QMC)
response functions (Gaussian may be viable)

Thanks for your attention
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Wave–functions for Importance Sampling

A very accurate way to account for correlations in a generic Fock–space is
the Coupled Cluster ansatz:

|ΨT 〉 = e−T̂ |ΦHF 〉 with T̂ = T̂1 + T̂2 + . . .

Here we will restrict to CCD case: T̂ = T̂2 =
1
2

∑

ij ,ab

tabij â†aâ
†
bâj âi .

Is the CCD wave–function even quick to evaluate in SD space?

We need to calculate

Φm
CCD

( p1p2···pm
h1h2···hm

)
= ΦCCD(n) for |n〉 = a†p1

. . . a†pmah1 . . . ahm |ΦHF〉
It turns out that one can write a recursive formula ([arXiv:1304.1549])

Φm
CCD ( ······ ) =

m∑

γ=2

m∑

µ<ν

(−)γ+µ+νt
pµpν
h1hγ

Φm−2
CCD ( ······ )
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Singular Value Decomposition (SVD)

We can make a discretization of the Integral transform

g(x) =

∫ b

a
K (x , y)f (y)dy −→ gi =

N∑

k

αkKik fk i ∈ [1,N]

gi ≡ g(xi ) Kik ≡ K (xi , yk) fk ≡ f (yk)

The SVD of the matrix K is a factorization of the form

K = UΣV T with U,V ,Σ ∈ RNxN

with U,V orthogonal and Σ = diag [σ1, . . . , σN ].

The columns ūj of U and v̄j of V can be regarded as orthonormal basis
vectors of RN and the following holds

Kv̄j = σj ūj KT ūj = σj v̄j
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Singular Value Decomposition (SVD) II

In terms of the SVD of the matrix K the direct and inverse problems can
be rewritten as

ḡ = Kf̄ =
N∑

j

σj(v̄
T
j f̄ )ūj f̄ = K−1ḡ =

N∑

j

ūTj ḡ

σj
v̄j

If the matrix K is the result of discretization of a Fredholm Integral
equation of the 1st kind the following basic properties holds

the singular values σi decay fast towards zero

the singular vectors ūi ,v̄i have increasing frequencies

We can use the decay rate of singular values to define a sort of degree of
ill − posedness
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Singular Value Spectrum
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Regularization techniques

The idea is to approximate our original ill-posed problem with a well-posed
one, constraining the solution with known features.

In most approaches we have minimization problems of the form

min
f̄

D
[
Kf̄ , ḡ

]
+ αL

[
f̄
]

where

D is a likelihood function (eg. Chi-squared, euclidean norm)
L is a penalty functional that enforces eg. smoothness
α is the regularization parameter
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Regularization techniques: some examples

Regularized Least Squared (Tikhonov)

min
f̄
‖Kf̄ − ḡ‖2 + α‖Γf̄ ‖2

where the Tikhonov matrix Γ can be the identity I or a discrete version of
a derivative operator D1,D2.

Cross-Entropy Minimization

min
f̄

KL
[
Kf̄ , ḡ

]
+ αKL

[
f̄ , f̄0

]

where KL is the Kullback-Leibler distance

KL
[
ā, b̄
]

=
∑

n

anlog(an/bn) + bn − an

and f̄0 is some prior estimate of f̄ (usually a positive constant)
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ā, b̄
]

=
∑

n

anlog(an/bn) + bn − an

and f̄0 is some prior estimate of f̄ (usually a positive constant)

Alessandro Roggero (UW & INT) Elba - 1 July, 2016 21 / 21



Density response of He4
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Density response of Unitary Fermi Gas

in collaboration with S.Gandolfi and J. Carlson(LANL)
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Neutron Matter with χ-EFT interactions at N2LO

Equation of State
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Neutron Matter with χ-EFT interactions at N2LO

Momentum distribution
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Constraining Nuclear Energy Density Functionals

Energy density functional for uniform matter:

E = Ekin +
∑

t=0,1

(
C ρt ρ

2
t + C τt ρtτt + C s

t s
2
t + CT

t stTt

)
.

contributions from both time–even and time–odd components.
time–even part constrained eg. by even–even nuclei
no effective way to constrain time–odd part

Idea: [M. M. Forbes et al. PRC 89, 041301(R) (2014)]
Calculate binding energy of an impurity in polarized neutron matter

ετσ =
∂E
∂ρτσ

∣∣∣∣
ρτσ→0

→ eg εn↓ ∝ (C s
0 + C s

1 ), (CT
0 + CT

1 )
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The neutron polaron
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The proton polarons I
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The proton polarons II

εp↑ − εp↓
EF

=
4m(C s

0 − C s
1 )

3π2~2 kF −
2m(CT

0 − CT
1 )
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Symmetric Nuclear Matter - finite size effects
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Neutron matter with QMC & χ-EFT NN interactions

NNLOopt Ekström et al. (2013) N3LO 500* Entem & Machleidt (2003) N3LO 414-450 Coraggio et al. (2007)
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Convergence of MBPT in neutron matter

∆E ≡ Ex − ECIMC

ECIMC
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Nuclear matter with QMC & χ-EFT NN interactions
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Convergence of MBPT in nuclear matter
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