The legacy of Adelchi Fabrocini

Short-range correlations and

structure of dilute hard- and soft —
sphere

»Microscopic description. Hamiltonian.

=Variational approach. HNC theory.

=Optimal correlation function. Asymptotic behavior. Excitation
Spectrum.

=Uniform approximation.

*Momentum distributions and condensed fraction.

=Universal behavior of the total energy
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We started our collaboration in 1979 with the derivation of the HNC-FHNC
equations for Bose-Fermi mixtures.
Momentum distributions, impurities ...
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This paper has been rediscovered by the cold-atoms community in
relation to the polaron problem.
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A microscopic calculation of the effective mass of one *He impurity in bomogeneous liquid *He at zero
temperature s performed for an extended Jastrow-Slater wave function, including two- and three-body dy-
namical correlations and also backflow correlations between the *He atom and the particles in the medium. The
effective mass at equilibrium density, mJ/m =121, is in very good agreement with the recent experimental
determination by Edwards et al The three-pamicle comelations appear to give & small contribution 1o the
effective mass and different approxmmations for the three-particle distribution function give almost identical

results for m$/m,.
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Nearly all physics is many-body physics at the most microscopic
level of understanding

Nuclear and

MeV
neutron matter

I

Quantum

Finite
MeV | ¢ L
liquids

Nuclel

Kelvins

l l

Cold Atoms  Nano Kelvins Exotic systems




Correlated wave functions

The sytems we are interested in have interactions between their
constituents which can largely modify the wave function respect to the

simple mean-field ansatz = correlations between the constituent particles
=» Difficult for perturbative calculations

ALTERNATIVE | Incorporate from the very begining the correlations to

the wave function

U(ry,...,mn) = F(ri,...,rp)o(ry, ooy )

For infinite uniform system
qb(ﬁ, s Tn) — 1 For bosons

@(Tla bees Tn) = I'reel’'ermiSea For fermions, normal Fermi liquid

A good starting point F(ri,...,rn) = H f(””fz:j)
1<J



Hard- and soft-sphere Bose gases

Hamiltonian
4 N N
He— 3 V4 S Viry
o 2m &y Vi
Interaction
_ V=0, r<R
% W, el Viri= _
F{r,r:" -~ [-] f.’?R‘
() r=da,
Hard-spheres a=R[1—tanh{ KR { K R}].
R

. .
ﬁ'a= 'ﬁ,r““ml.l';l} .- Soft-spheres

b =p+a]




Variational approach

Correlated ground-state wave function

Woll,2,... N)=FH12, ... N)dylL2,....N)

In the Bose case I:]}ﬂ N} All bosons in the zero-momentum state
LI I T

{IJ'U=I

The exact wave function of a homogeneous, interacting Bose system can be written
the product of up to N-body correlation factors

-I"['F[H_ 1.2, .. il"rr.j—l_[ _,IPﬂJ'l-l.]' l__[ fﬂr“ Cjo s rl'r.l'r]I

i) S o 1

A Jastrow correlated wave function is a good starting point



Expectation value

IAIso possible by Monte Carlo VMC

ELRI= " )

{WolH|W )

E 1
E:;:"" Jdﬁﬂf{ﬁﬂ 1!";|:J'|:_]_‘,':I'*“'v_lﬂ_f1{r]3:.

2

}
h-

LA

Where g(r) is the two-body radial distribution function:

.’Ei.ﬁ::':

hr':hr_ 19 J :’Fr_-l,q:.’]‘4= . =ffr.:.lr|"-£"[,|1

2 | i
P j |'.']|1r|ﬂr]';_| . '{!rl‘ln.,-l":[:"[;.l‘

Cluster expansion, and
massive sums of
diagrams = HNC
equations




Two options for the two-body correlation function

Nk r< 1
fsrlry=14 d sin[K{r—1}]
Crosin[Kid—11]"

where distances are in units of a, and K fulfills the equation
cotf K(d—1)]=(Kd)~'. The latter condition ensures the
healing properties: fypir=1)=1 and feg{r=d)=0.

Optimize the functional respect to the two-body correlation function = Euler-Lagrange
equation. Can be written as a minimization respect to g(r).

SE[f] ok ¢ | .
3f5(r) =0 sg(r)




At the end the variations are performed respect to S(k)

The minimization leads to

S(k) is the static structure function,

k)

S(k) =1+ p/ d%e“gf[g(r) — 1]

Sik)=

5

A =
Voplrl=glrVirl+ ::T'F yelr " +lglr)—1Tmlr)

,I'.',-"“L.]_._EUM{HHH‘ with !{H=i’i3k:f2m

and

where

w (k)= 51(k) Ty

| [28(ky+1][S{ky—=17

Is the induced interaction
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Low density expansion of
Lee and Yang
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ITwo-body radial distribution function for several gas parameters. I

g(r) — 1~ 1/r*: 1 = oqg

X=0.1 (solid line), 0.01 (dot-dashed), 0.001 (long-dashed), 0.0001 (short-dashed)
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VMC g(r) (solid line) and HNC g(r) (dashed line) for x=0.01 (left panel) and
x=0.1 (right panel). f(r) (dot-dashed line) is the short-range analytical one.
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Static structure function for x=0.0001 (solid line), x=0.001 (dotted line)
x=0.005 (dashed line) and x=0.01 (dot-dashed line)
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| S(k> 0) Skic |

The slope of S(k) becomes smaller when x increases because the speed of sound increases
with density. The linear low-k behavior guarantees the correct low-energy spectrum.



Excitation spectrum at x=0.1 (solid line) and x=0.001 (dashed line).
The dotted line corresponds to Bogoliubov spectrum for x=0.1

| e()=t(k)/S(K) |

2'] L| I I I 1 | | I Irl._
= II. "r - . . .
S Coincides with the energy
15~ y n of a Feynman phonon
g &
- ll_.|'ll- =
:?f:' 10 - — Linear behavior at small k
! callid .
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The first oscillation of S(k) can be large enough to produce a maxon-roton.
At x=0.001, Bogoliubov and EL almost coincide




Momentum distribution and one-body density matrix

One-body density matrix for a homogeneous Bose gas

p(r . r) Diagonal part = density
of the homogeneous
=plr) system.
J drsdry- - -drey, Wi 1.2, N)WL(17.2, ... N The condensate fraction
N Is related to the long-range
i 1 behavior:
[ .:h‘, . '|'.'|!II'I-,|-|1"]"r|:r|j

np=p(r—x)fp

n(k) is obtained through the Fourier transform of the one-body density matrix

(k=27 pn,8(k)+ [ drexplik-r) pyiri—pngl.




Normalization of n(k)

l

| = J dkni{k),
27 ) i

Kinetic energy from n(k)

! 1 fdkﬁzk2 (/
N Q2mip) O 2m n(k).

That for HS should coincide with the total energy.




k*n(k) for x=0.05 (solid line) and x=0.08 (dashed line)

The n(k) for the optimal correlation has the correct long-wavelength limit

My
lim kn(k)= a1

i =}

Competition between n0 and c.

K*n(k) develops a peak when x increases due to short range effects



Soft spheres I

A simple estimate of the energy is provided by the first-order perturbation theory

EI{F‘:' {‘I’ianltlj'u} I 4 -
= = = == I = = =
N N 3 PYog TR =5VI0),

-

Where |/ Is the Fourier transform of the potential and vqfr'::, = 1,."ﬂ.""'"'3

Is the wave function of the free system, with all particles occupying the
zero momentum state.

The second-order perturbative correction :

Esp) |J‘ dq |Vig)|*

N 2p) (2@ higiim

Eipy=E,(p)+E-(p) Isnolonger an upper-bound to the energy.



Uniform limit approximation I

Epelp) 1

N 2

AT [S(k) =17

I L

| d

|

;V{ﬂ}-l— 5

d K
JEEWJTUJ

H

S(k)

(S(Ey— 11V k)

gir)—1

lngi;*}tg{r] =1

Minimization with respect to S(k) provides the Euler-Lagrange equation

Vik)+

AT SY kI —1]

dm

Sk

Spplk)=

Hik)

u'rsz{k]—rlnﬁ}ﬂk}-




Scaled energy per particle for the SS5 (triangles) and SS10 (circles) potentials

in the EL (filled triangles and circles) and UL (empty triangles and circles).

The stars and crosses are DMC results for SS10 and SS5 respectively.
The solid line corresponds to the EL energies for the HS potential.
The horizontal lines gives the upper bounds for the SS5 (dash-double dotted)

and SS10 (dashed) potentials.
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Scaled energies and condensate fractions for the soft-sphere gas for two

Potentials having the same scattering length

= p—

X R EIN VIN T IN T IN fy
EL n-* 10 13052 10°%  1.202%10°% 1,038 10 1000107 0.988
SR - 10 L3I7X1070  L241=107% 076510 0765 10°% 0,997
UL (T 1) 12051071 1184 10°° Lo 10-% 0992
IPC 102 10) 131110
DMC 1 10 1,303 10" 0,989
EL n-* 5 1314107 Lodd=10°Y 270810 263010°% 0985
SR - 5 136110°%  LI138x<10°% 223110 2231 10°% 0.996
UL 10 5 1.231<10°% 08531077 37801074 0982
[PC - 5 133110 0,987
DMC 1n-* 5 1.309% 10 0.989
EL 103 1) 1404 107" 1394107 0.990% 10 0081107 0980
SR 103 1) 1405 10" 13951070 096010 0960 10°F 0977
UL 103 1) 1404 10" 1.395% 107 0063107 (0.980
[PC 102 10 1. 408 107"
EL 103 5 1,532 10" 14682107 6445% 10 6ARDX 10T 0951
SR 10 3 1,335 10" 148110 2330 10 5,350 107 (0,960
UL 103 5 1,528 107" 14643 107" 63751077 0950
[PC 103 5 1.556% 10" 0.953




Radial distribution functions for SS10 and SS5 at x=0.0001 (solid line
for SS10 and dotted for SS5) and x=0.001 ( dashed line for SS10) and
dashed-dot-dot for SS5).

|.-1 T I T l I !

0.9 —~
=

“Eﬁ DS E —

0T f -

-.|.--"'. .': =

06 ¢ —

] I ] I | I |
"3 10 20 30 40




Dependence of the condensate fraction on the shape of the potential at
x=0.001 as a function of the radius of the SS potential at fixed scattering
length. The condensate fraction grows with R, since the interaction softens.
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The dashed line is for UL that becomes accurate for large R as the interaction
softens.



Summary

* HNC with a Jastrow wave function and a optimal two-body correlation
function provides a good description of both hard- and soft-spheres.

* The dependence of the energy on the shape of the potential
appears around x=0.001.

* For smaller x, the universality applies only to the total energy, but not to
the potential and kinetic energy. We have found a shape dependence of the
condensate fraction for soft-spheres at x=0.001.

*The UL approach becomes reliable when the potentail is soft.

Appearance of structure in g(r) and in the excitation spectrum when x
Increases.




Other applications: mainly related to cold gases.
Remember that in cold gases one can control the
geometry and the interaction.

*Consider different dimensionalities.
*Trapped hard- and soft-spheres. Model for BEC in cold atoms.

*Fermi-hard spheres: Ground-state, single-particle spectrum,
effective mass, n(k), spectral functions (PhD Angela Mecca)

*Ferromagnetic transition.

*Multicomponent systems: Mixtures of Bose and Fermi hard- and
soft-spheres




Summer 2004 in Costa Brava, close to Barcelona




