
Short-range correlations and 

structure of dilute hard- and soft –

sphere gases 

Microscopic description. Hamiltonian.

Variational approach. HNC theory.

Optimal correlation function. Asymptotic behavior. Excitation 

Spectrum.

Uniform approximation. 

Momentum distributions and condensed fraction.

Universal behavior of the total energy

The legacy of Adelchi Fabrocini  







We started our collaboration in 1979 with the derivation of the HNC-FHNC 

equations for Bose-Fermi mixtures. 

Momentum distributions, impurities …



This paper has been rediscovered by the cold-atoms community in 

relation to the polaron problem.





Also very elegant!



Nearly all physics is many-body physics at the most microscopic 

level of understanding
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Correlated wave functions

The sytems we are interested in have    interactions between their 

constituents which can largely modify the wave function respect to the 

simple mean-field ansatz  correlations between the constituent particles 

 Difficult for perturbative calculations

ALTERNATIVE Incorporate from the very begining the correlations to 

the wave function 

For infinite uniform  system

For bosons

For fermions, normal Fermi liquid

A good starting point 



Hard- and soft-sphere Bose gases

Hamiltonian

Interaction

Hard-spheres

Soft-spheres



Variational approach

Correlated ground-state wave function

In the Bose case All bosons in the zero-momentum state

The exact wave function of a homogeneous, interacting Bose system can be written 

the product of up to N-body correlation factors

A Jastrow correlated wave function is a good starting point



Expectation value

Where g(r) is the two-body radial distribution function:

Also possible by Monte Carlo VMC

Cluster expansion, and 

massive sums of 

diagrams  HNC 

equations



Two options for the two-body correlation function

Optimize the functional respect to the two-body correlation function  Euler-Lagrange

equation. Can be written as a minimization respect to g(r).



At the end the variations are performed respect to S(k)

The minimization leads to

with

and

where

Is the induced interaction

S(k) is the static structure function, 



Scaled energy per 

particle of the HS gas as 

a function of the gas 

parameter 

Low density expansion of

Lee and Yang

Open squares: DMC 

Solid circles: HNC-op

Stars: HNC-f

Dashed line: Low density

expansion.



Two-body radial distribution function for several gas parameters.

X=0.1 (solid line), 0.01 (dot-dashed), 0.001 (long-dashed), 0.0001 (short-dashed)



VMC g(r) (solid line) and HNC g(r) (dashed line) for x=0.01 (left panel)  and 

x=0.1 (right panel). f(r) (dot-dashed line) is the short-range analytical one. 



Static structure function for  x=0.0001 (solid line), x=0.001 (dotted line)

x=0.005 (dashed line) and x=0.01 (dot-dashed line)

The slope of S(k) becomes smaller when x increases because the speed of sound  increases

with density.  The linear low-k behavior guarantees the correct low-energy spectrum.

S(k 0) k/c



Excitation spectrum at x=0.1 (solid line) and x=0.001 (dashed line).

The dotted line corresponds to Bogoliubov spectrum for x=0.1

e(k)= t(k)/S(k)

Coincides with the energy

of a Feynman phonon

The first oscillation of S(k) can be large enough to produce a maxon-roton.

At x=0.001, Bogoliubov and EL almost coincide  

Linear behavior at small k



Momentum distribution and one-body density matrix

One-body density matrix for a homogeneous Bose gas

n(k) is obtained through the Fourier transform of the one-body density matrix  

Diagonal part  = density 

of the homogeneous 

system.

The condensate fraction

Is related to the long-range

behavior:



Normalization of n(k)

Kinetic energy from n(k)

That for HS should coincide with the total energy. 



k*n(k) for x=0.05 (solid line) and x=0.08 (dashed line) 

Competition between n0 and c. 

K*n(k) develops a peak when x increases due to short range effects

The n(k) for the optimal correlation has the correct long-wavelength limit



Soft spheres

A simple estimate of the energy is provided by the first-order perturbation theory

Where Is the Fourier transform of the potential and =

is the wave function of the free system, with all particles occupying the 

zero momentum state.

The second-order perturbative correction :

Is no longer an upper-bound to the energy.



Uniform limit approximation

Minimization with respect to S(k) provides the Euler-Lagrange equation



Scaled energy per particle for the SS5 (triangles) and SS10 (circles) potentials

in the EL (filled triangles and circles) and UL (empty triangles and circles).

The stars and crosses are DMC results for SS10 and SS5 respectively.

The solid line corresponds to the EL energies for the HS potential.

The horizontal  lines gives the upper bounds for the SS5 (dash-double dotted) 

and SS10 (dashed) potentials.



Scaled energies and condensate fractions for the soft-sphere gas for two

Potentials having the same scattering length 



Radial distribution functions for SS10 and SS5 at x=0.0001 (solid  line

for SS10 and dotted for SS5) and x=0.001 ( dashed line for SS10) and 

dashed-dot-dot for SS5). 



Dependence of the condensate fraction on the shape of the potential at

x=0.001 as a function of the radius of the SS potential at fixed scattering

length. The condensate fraction grows with R, since the interaction softens.  

The dashed line is for UL that becomes accurate for large R as the interaction 

softens.



Summary

* HNC with a Jastrow wave function and a optimal two-body correlation

function  provides a good description of both hard- and soft-spheres.

* The dependence of the energy on the shape of the potential

appears  around x=0.001. 

• For smaller x, the universality applies only to the total energy, but not to

the potential and kinetic energy. We have found a shape dependence of the 

condensate fraction for soft-spheres at x=0.001. 

•The UL approach becomes reliable when the potentail is soft.

•Appearance of structure in g(r) and in the excitation spectrum when x 

increases.  



Other applications: mainly related to cold gases. 

Remember that in cold gases one can control the

geometry and the interaction.

•Consider different dimensionalities.

•Trapped hard- and soft-spheres. Model for BEC in cold atoms.

•Fermi-hard spheres: Ground-state, single-particle spectrum, 

effective mass, n(k), spectral functions (PhD Angela Mecca)

•Ferromagnetic transition.

•Multicomponent systems: Mixtures of Bose and Fermi hard- and

soft-spheres



Summer 2004 in Costa Brava, close to Barcelona


