Neutrinoless Double-Beta Decay

Michal Tarka

Stony Brook University

Outline

- Neutrinoless double-beta decay (0νββ)
 Historical background & Motivation
- Neutrino masses
- Overview of (2vββ & 0vββ) detection techniques
- Detector examples & Recent Results
- Future "Ton Scale" experiments
- Summary/Outlook

- 1930: Pauli suggests a "neutrino" which accompanies the electron in the β-decay
- 1932: Chadwick's discovery of the "neutron"
- 1934: Fermi's incorporation of both in his theory of the β decay

$$n \rightarrow p + e^{-} + \bar{v}_{e}$$

$$\beta$$
 decay: (Z,A) \rightarrow (Z+1, A) + e^{-} + \overline{v}_{e}

e.g.
$$^{198}\text{Au}_{79} \rightarrow ^{198}\text{Hg}_{80} + e^{-} + \overline{v}_{e}^{-}$$

• 1935: M.Goppert-Meyer describes "double -β disintegration"

$$2n \rightarrow 2p + 2e^{-} + 2v_{e}$$

2vββ decay: $(Z,A) \rightarrow (Z+2,A) + 2e^- + 2\overline{v}_e$ compatible with standard model

In some isotopes simultaneous decay of two neutrons into two protons possible

2vββ possible in 35 isotopes

Measured in Ca⁴⁸, Ge⁷⁶, Xe¹³⁶, ...

$$T_{1/2} (2v\beta\beta) = (10^{18} - 10^{21}) \text{ year}$$

Age of the Universe: ~10¹⁰ years!

• 1937: Majorana suggests that $v_e = \overline{v}_e$

0ν β β decay: (Z,A) \rightarrow (Z+2,A) + 2e⁻

not compatible with standard model

$$\rightarrow \Delta L = 2$$
$$\rightarrow m_{v} > 0$$

• 1937 Giulio Racah points out that Majoranas theory can be tested

How to adress the problem experimentally?

Neutrino and anti-neutrino seem distinguishable, since they produce different final states

1955 Ray Davis in concludes that using anti-neutrinos from reactor

$$V_e$$
 distinct from V_e

$$\overline{V}_{e} + {}^{37}CI \rightarrow {}^{37}Ar + e^{-}$$

Anti-neutrinos from reactor

$$V_e^{-}$$
 + $^{37}CI \rightarrow ^{37}Ar + e^{-}$

Neutrinos from the sun

Introduce Lepton Number 'L' to distinguish between neutrino and anti-neutrino

Allows to define allowed reactions

$$\Sigma L_{IN} = \Sigma L_{OUT}$$

Lepton	L
e e V e V e	+1 - 1 +1 - 1

 1957 discovery of parity violation in weak interactions and two component neutrino

 Since parity violation labels the neutrinos to be left-handed, no lepton number needed anymore

Observations could be explained with neutrino helicity

Majorana nature of neutrinos not excluded yet

Neutrino Masses

$$\mathsf{P}_{\mathfrak{a} o \mathfrak{b}} hicksim \sin^2 \left(rac{\Delta m_{ij}^2 L}{4E}
ight)$$

We know neutrinos have mass!

Our first hints of physics beyond Standard Model

Further hints

- Gravity
- Dark Matter
- Dark Energy
- Matter-antimatter asymmetry

Neutrino Masses

- Solar v
- Reactor v
- Atmospheric v
- Accelerator v

Neutrino Masses

IH = Inverted Hierarchy

NH = Normal Hierarchy

To reach inverted hierarchy region we need sensitivities of:

0vββ:
$$T_{1/2} \sim 10^{27} - 10^{28}$$
 years

**2v
$$\beta\beta$$
:** T_{1/2} ~ 10¹⁹ – 10²¹ years

Signal signature

Halflifes are determined by:

- Phase space factor
- Nuclear matrix elements
- Effective neutrino mass can be inferred from halflife measurements

Detector Sensitivity

$$T_{1/2}(0v\beta\beta) = a \cdot \epsilon \cdot \sqrt{(M \cdot T/B \cdot dE)}$$

0vββ source Isotopically enriched

a=isotopic abundance of source

ε= detection efficiency

M=total mass

T= exposure time

B = background in 0vbb ROI

dE = energy resolution

Detector

High detection efficiency (e.g. source=detector) Good energy resolution Low-background

Experiment

Long exposure times Large source mass

Half Ifes of $2v\beta\beta$ are $O(10^{21})$ years

1 Mole of source isotope produces ~ 1 decay/day!

Half Ife [years]	Signal [counts/tonne-year]
10 ²⁵	500
5·10 ²⁶	10
10 ²⁷	1
10 ²⁸	0.1

$$T_{1/2} = a \cdot \epsilon \cdot \sqrt{(M \cdot T/B \cdot dE)}$$
 Background limited $T_{1/2} = a \cdot \epsilon \cdot M \cdot T$ Background free

0vββ & 2vββ detector technology challenging due to rare events

Potential Backgrounds

- Primordial, natural radioactivity in detector components: U, Th, K
- Backgrounds from cosmogenic activation while material is above ground (ββ- isotope or shield specific)
- Backgrounds from the surrounding environment: external γ, (α,n), (n,α), Rn,
- µ-induced backgrounds generated at depth
- 2 neutrino double beta decay (irreducible, E resolution dependent)
- Neutrino backgrounds (negligible)

Reduce Background (passive)

- Ultra pure materials
- Shielding
- Deep underground

Discriminate Background (active)

- Energy resolution
- Event topology
- Fiducial cuts
- Pulse shape discrimination
- Particle identification

Further issues

- Unknown gamma transitions
- Nuclear matrix elements not accurately known
- Different isotopes require different technologies
- 2-v background different in each case

• There are 35 naturally occurring isotopes that can undergo a ββ decay.

 Only twelve isotopes have been experimentally observed undergoing 2vββ:

48Ca, 76Ge, 82Se,96Zr, 100Mo, 116Cd, 128Te, 130Te, 130Ba, 136Xe, 150Nd, and 238U

How do you choose your isotope?

Choice of isotopes

Detector examples & Recent Reults

EXO-200, 1600 m.w.e. WIPP, NM

CUORE, 3500 m.w.e LNGS, Gran Sasso

GERDA, 3500 m.w.e LNGS, Gran Sasso

NEMO-3/ SuperNEMO, 4800 m.w.e. LSM, Modane

- EXO 200 searches for the 0vββ decay in Xe¹³⁶
- Q-value: 2.458 MeV
- Location at WIPP (Waste Isolation Pilot Plant), NM
- EXO-200 drift: 655 m deep, ca. 1600 m.w.e.
- Dual Time Projection Chamber with LXe enriched to 80.6% Xe¹³⁶

- Read Scintillation and Ionization signals
- Scintillation light measured with APDs
- Charge Collection (U) wires
- Shielding/Induction (V) wires
- Event topology used for Single-site and Multi-site event discrimination

Anti-correlation between scint & ionization used to improve energy resolution

- Background well understood
- Profile Likelihood Analysis
- No evidence for 0vββ in Xe¹³⁶
- Current half life limit:
 - 1.1 x 10²⁵ years, 90% CL
- Majorana neutrino mass:

(190 - 450) meV

- Strings of Ge detectors immersed in LAr
- Enrichment up to 86% ⁷⁶Ge possible
- Q-value: 2.039 MeV
- Detector = Source: very good detection efficiency: ε ~ 100%
- Very good energy resolution: < 0.2% @ 2.6 MeV
- High-purity germanium → low intrinsic background
- Detector technology well established and developed (since ~1960)

GERDA - Phase I finished

- Exposure 21.6 kg x year
- Background: (11 ± 2) x 10⁻³ cts/(keV kg year)
- $T_{1/2} > 2.1 \times 10^{25} \text{ years (90\% CL)}$

GERDA-Phase II, comissioned in Dec 2015

- 30 new Broad Energy Ge (BEGe) detectors
- Active mass 35.8 kg of enriched Ge
- Background reduction to ~10⁻³ cts/(keV kg year)

Goal

Exposure of 100 kg years Improve limit on $T_{1/2} \sim 10^{26}$ years

Detector examples & Recent Reults

Recent Highlights

- The EXO, GERDA and KamLAND-Zen double beta decay detectors have essentially ruled out a long-standing claim for observation of the neutrinoless decay mode in ⁷⁶Ge (HdM).
- The CUORE Collaboration has brought the world's largest-volume dilution refrigerator to base temperature (6mK), a major step towards a ton-scale bolometric experiment.
- The MAJORANA DEMONSTRATOR Collaboration has reported record Cu purity from its underground electroforming campaign, and expects to achieve the ultra-low backgrounds specified. Commissioning runs with more than 10 kg of highly enriched ⁷⁶Ge are beginning in the SURF laboratory.
- The SNO+ experiment has demonstrated the stable suspension of isotopes in the scintillator Linear Alkyl Benzene, another path toward a ton-scale

Detector examples & Recent Reults

Isotope	Experiment	Mass [kg] (Total / FV)	Bckg [counts/y t] in ROI	FWHM in ROI [keV]
Ge ⁷⁶	GERDA I	16/13	40	4
Xe ¹³⁶	EXO-200	170/76	130	88
Xe ¹³⁶	KamlandZen	383/88	210 per t(Xe)	400
Te ¹³⁰	CUORE0	32/11	300	5.1

Isotope	Experiment	Exposure (kg year)	Sensitivity 10 ²⁵ yr	T _{1/2} *10 ²⁵ yr 90%CL	<m<sub>v > (meV)</m<sub>
Ge ⁷⁶	GERDA I	21.6	2.4	>2.1	200-400
Xe ¹³⁶	EXO-200	100	1.9	>1.1	190-450
Xe ¹³⁶	KamlandZen	504	4.9	>11	60-161
Te ¹³⁰	CUORE	19.75	0.29	0.4	270-760

Future "Ton Scale" experiments

Goal of current and future efforts - test inverted hierarchy parameter space with tonne scale experiments

76_{Ge}:

Large Scale Ge, O(tonne) HPGE crystals (GERDA & MAJORANA)

82Se:

• SuperNEMO: Se foils, tracking and calorimeter, 100 kg scale

136_{Xe}:

- KamLANDZen ¹³⁶Xe in scintillator (several upgrades planned)
- NEXO Liquid TPC, 5 tonne of ¹³⁶Xe
- NEXT High pressure gas TPC, tonne scale LZ (dark matter), liquid TPC, 7 tonne

Future "Ton Scale" experiments

Conclusion/Outlook

- 0vββ physics is the most sensitive probe of lepton number violation.
- A 0vββ discovery would proof the Majorana or Dirac nature of neutrinos and indicate physics beyond the Standard Model
- Halflife limits of 10²⁵-10²⁶ years are currently probed, but no discovery claimed yet.
- Scalability of detector technology will push the limits further down.
 New results expected in few years
- Covering the inverted hierarchy with 10meV sensitivities is within reach

Backup slides

Future "Ton Scale" experiments

Discovery level, inverted hierarchy

Future "Ton Scale" experiments

Ongoing upgrades and their projections

Isotope	Experiment	Mass [kg] (Total / FV)	Bckg [counts/y t] in ROI	FWHM in ROI [keV]
Ge ⁷⁶	GERDA II	35/27	4	4
Ge ⁷⁶	Majorana demonstrator	30/24	3	4
Xe ¹³⁶	NEXT100	100/80	9	17
Te ¹³⁰	CUORE	600/206	50	5
Te ¹³⁰	SNO+	2340/160	45 per t (Te)	240

Global 0vββ Efforts

Collaboration	Isotope	Technique	mass (0νββ isotope)	Status
CANDLES	Ca-48	305 kg CaF ₂ crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	~ tonne	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
II		Point contact Ge in LAr	30-35 kg	Commissioning
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	30 kg	Commissioning
Ton Scale Ge	Ge-76	Point contact	~ tonne	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
LUCIFER	Se-82	ZnSe scint. bolometer	18 kg	R&D
AMoRE	Mo-100	CaMoO4 scint. bolometer	50 kg	R&D
MOON	Mo-100	Mo sheets	200 kg	R&D
COBRA	Cd-116	CdZnTe detectors	10 kg 183 kg	R&D
CUORICINO	Te-130	TeO ₂ Bolometer	10 kg	Complete
CUORE-0	Te-130	TeO ₂ Bolometer	11 kg	Operating
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Construction
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ tonne	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	800 kg	Construction
KamLAND-ZEN	Xe-136	2.7% in liquid scint.	360 kg	Operating
		2.7% in liquid scint.	800 kg	Upgrade
NEXT-100	Xe-136	High pressure Xe TPC	80 kg	Construction
EXO200	Xe-136	Xe liquid TPC	160 kg	Operating*
nEXO	Xe-136	Xe liquid TPC	~ tonne	R&D
DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

Global 0vββ Efforts

Isotope	0vββ half life	Experiment	<m> eV</m>
48-Ca	> 1.4*10 ²² (90%CL)	ELEGANT-VI	< 7 - 44
76-Ge	> 1.9*10 ²⁵ (90%CL)	Heidelberg-Moscow	< 0.35
76-Ge	2.3*10 ²⁵ (90%CL)	Subset of HM coll.	0.32 +/- 0.03
76-Ge	> 2.1*10 ²⁵ (90%CL)	GERDA†	< 0.2 - 0.4
82-Se	> 2.1*10 ²³ (90%CL)	NEMO-3	<1.2 – 3.2
100-Mo	> 5.8*10 ²³ (90%CL)	NEMO-3	< 0.6 – 2.7
116-Cd	> 1.7*10 ²³ (90%CL)	Solotvino	< 1.7
130-Te	> 2.8*10 ²⁴ (90%CL)	Cuoricino	< 0.41 – 0.98
136-Xe	> 1.9*10 ²⁵ (90%CL)	KamLAND-Zen	< 0.12 – 0.25
136-Xe	> 1.6×10 ²⁵ (90%CL)	EXO-200	< 0.14 – 0.38
150-Nd	> 1.1*10 ²⁴ (90%CL)	NEMO-3	< 0.33-0.62

Neutrino Oscillations

$$\ket{
u_lpha}=\sum_i U_{lpha i}^*\ket{
u_i}$$
 $\ket{
u_i(t)}=e^{-i(E_i t-ec p_i\cdotec x)}\ket{
u_i(0)}$ with E $_{_i}$ = m $_{_i}$ c 2

v_i = flavour eigenstates

U = Lepton mixing matrix

L = Travel distance

$$\mathsf{P}_{\mathfrak{a} o \mathfrak{b}} hicksim \sin^2 \left(rac{\Delta m_{ij}^2 L}{4E}
ight)$$

Neutrino oscillations = non-zero neutrino mass

Neutrino Oscillations

K2K

KamLAND

SNO: solar v_e flavor oscillation

KamLAND: reactor v_e disappearance and oscillation