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● Neutrinoless double-beta decay (0νββ)
   Historical background & Motivation  

● Neutrino masses 

● Overview of (2νββ & 0νββ) detection techniques

● Detector examples & Recent Results

● Future “Ton Scale” experiments

● Summary/Outlook

Outline
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● 1930: Pauli suggests a “neutrino” which accompanies the electron in the β-decay 

● 1932: Chadwick's discovery of the “neutron”

● 1934: Fermi's incorporation of both in his theory of the β decay 
    

n → p + e- + v
e
 

β decay: (Z,A) → (Z+1, A) + e- + ν
e

e.g. 198Au
79

 → 198Hg
80

 + e- + ν
e

Historical background and motivation
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● 1935: M.Goppert-Meyer describes “double -β disintegration”

2n → 2p +  2e- + 2v
e

2νββ decay: (Z,A) → (Z+2,A) + 2e- + 2ν
e

compatible with standard model

Historical background and motivation
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Historical background and motivation

2vββ possible in 
35 isotopes

 
Measured in 

Ca48, Ge76, Xe136, …

In some isotopes simultaneous decay of two neutrons into two protons possible 

T
1/2

 (2vββ) = (1018 – 1021) year

Age of the Universe: ~1010 years !

odd

even
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● 1937: Majorana suggests that v
e
 = v

e

0νββ decay: (Z,A) → (Z+2,A) + 2e- 

not compatible with standard model

→ ΔL = 2 
→ m

ν
 > 0

Historical background and motivation

● 1937 Giulio Racah points out that Majoranas theory can be tested
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How to adress the problem experimentally?

e+

e-

v
e

e- e+v
e

Neutrino and anti-neutrino seem distinguishable, since they produce 
different final states

Historical background and motivation

β+ source

β- source Target

Target
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Introduce Lepton Number  'L' to distinguish between neutrino and anti-neutrino

Allows to define allowed reactions

ΣL
IN

 = ΣL
OUT

  

Lepton L

e- +1
e+ - 1

+1
- 1v

e

v
e

v
e

v
e

Historical background and motivation

1955 Ray Davis in concludes that distinct from
using anti-neutrinos from reactor  

v
e

v
e

v
e

v
e

+ 37Cl → 37Ar +e-

+ 37Cl → 37Ar +e- Anti-neutrinos from reactor

Neutrinos from the sun

X
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● 1957 discovery of parity violation in weak interactions and two
component neutrino

● Since parity violation labels the neutrinos to be left-handed, no 
lepton number needed anymore

● Observations could be explained with neutrino helicity

Majorana nature of neutrinos not excluded yet

Historical background and motivation
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We know neutrinos have mass!

Our first hints of physics beyond Standard Model

Further hints

● Gravity

● Dark Matter 

● Dark Energy

● Matter-antimatter asymmetry

P
α → β

 ~  

Neutrino Masses
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● Solar v
● Reactor v
● Atmospheric v
● Accelerator v

Neutrino Masses
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IH

NH

To reach inverted hierarchy region we need sensitivities of:

2vββ: T
1/2

 ~ 1019 – 1021 years0vββ: T
1/2

 ~ 1027 – 1028 years

Neutrino Masses

IH = Inverted Hierarchy

NH = Normal Hierarchy
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(A,Z) -> (A,Z+2) + 2e- +2 v
e

(A,Z) -> (A,Z+2) + 2e-

Overview of detection techniques

Signal signature

Q-value
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1/T0ν
1/2

 = G
0ν

 (Q,Z) |M
0ν

|2  <m
ν
>2

Phase space factor

Nuclear matrix element

 |Σ m
i
 U

ei
2| = effective Majorana neutrino mass

PMNS mixing matrix

mass eigenstates

Halflifes are determined by: 

● Phase space factor

● Nuclear matrix elements  

● Effective neutrino mass can be inferred from halflife measurements

Overview of detection techniques
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0vββ source 
Isotopically enriched

Detector
High detection eff iciency (e.g. source=detector)
Good energy resolution
Low-background

Experiment
Long exposure times
Large source mass 

T
1/2

(0vββ) = a · ε · √(M·T/B·dE) a=isotopic abundance of source
ε= detection eff iciency
M=total mass
T= exposure time
B = background in 0vbb ROI

dE = energy resolution

Overview of detection techniques

Detector Sensitivity
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T
1/2

=  a · ε ·  √(M·T/B·dE)      Background limited

T
1/2

=  a · ε · M · T      Background free

Half lifes of 2vββ are O(1021) years

Half life [years] Signal [counts/tonne-year]

1025 500

5·1026 10

1027 1

1028 0.1

Overview of detection techniques

0vββ & 2vββ detector technology challenging due to rare events

 1 Mole of source isotope produces ~ 1 decay/day !
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Potential Backgrounds

 

●  Primordial, natural radioactivity in detector components: U, Th, K 

●  Backgrounds from cosmogenic activation while material is above
 ground    (ββ- isotope or shield specific) 

● Backgrounds from the surrounding environment: 

    external γ, (α,n), (n,α), Rn,

●  μ-induced backgrounds generated at depth

●  2 neutrino double beta decay (irreducible, E resolution dependent) 

●  Neutrino backgrounds (negligible) 

Overview of detection techniques
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Reduce Background 
(passive)

● Ultra pure materials
● Shielding
● Deep underground

Discriminate Background
(active)

● Energy resolution
● Event topology
● Fiducial cuts
● Pulse shape discrimination
● Particle identification

Further issues

● Unknown gamma transitions 
● Nuclear matrix elements not accurately known
● Different isotopes require different technologies
● 2-v background different in each case

Overview of detection techniques
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Ionization
Tracking&Cal: Crystals
SuperNEMO GERDA

Majorana

Scintillation
Liquid:
KamLAND ZEN
SNO+

Phonons
Bolometer:
Cuore

TPC:
EXO
NEXT

CUPID 
(Lucifer)

Overview of detection techniques
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● There are 35 naturally occurring isotopes that can undergo a ββ decay.

● Only twelve isotopes have been experimentally observed undergoing 
2vββ:

● How do you choose your isotope?

Overview of detection techniques

48Ca, 76Ge, 82Se,96Zr, 100Mo, 116Cd, 128Te,
 

130Te, 130Ba, 136Xe, 150Nd, and 238U

http://www.liquisearch.com/what_is_decay
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Choice of isotopes

Sensitivity

S
en

si
tiv

ity

● Higher Q-value 

= less background

● Higher nat. abundance

 = better cost efficiency

Optimal isotope: 
 
upper, right corner

Overview of detection techniques
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Overview of detection techniques
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CUORE, 3500 m.w.e
LNGS, Gran Sasso

GERDA, 3500 m.w.e
LNGS, Gran Sasso

EXO-200, 1600 m.w.e.
WIPP, NM

NEMO-3/ SuperNEMO, 4800 m.w.e.
LSM, Modane

and ~20 more …..

Detector examples & Recent Reults 



  24

●  EXO – 200 searches for the 0vββ decay in Xe136

●  Q-value: 2.458 MeV

●  Location at WIPP (Waste Isolation Pilot Plant), NM

●  EXO-200 drift: 655 m deep, ca. 1600 m.w.e.

●  Dual Time Projection Chamber with  LXe enriched 
     to 80.6% Xe136

EXO-200Detector examples & Recent Reults 
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●  Read Scintillation and Ionization signals

●  Scintillation light measured with APDs

●  Charge Collection (U) wires

●  Shielding/Induction (V) wires

●  Event topology used for Single-site and 
    Multi-site event discrimination

●  Anti-correlation between scint & ionization
    used to improve energy resolution

APD PlaneKathode

Anode wire plane

EXO-200Detector examples & Recent Reults 
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●  Background well understood 

●  Profile Likelihood Analysis

●  No evidence for 0νββ in Xe136

 
●  Current half life limit: 

 
 1.1 x 1025 years, 90% CL 

●  Majorana neutrino mass: 

 (190 – 450) meV

EXO-200Detector examples & Recent Reults 
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GERDADetector examples & Recent Reults 
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●  Strings of Ge detectors immersed in LAr

●  Enrichment up to 86% 76Ge possible

●  Q-value: 2.039 MeV

●  Detector = Source: very good detection efficiency: ε ~ 100%

●  Very good energy resolution: < 0.2% @ 2.6 MeV

●  High-purity germanium → low intrinsic background

●  Detector technology well established and developed (since ~1960)

GERDADetector examples & Recent Reults 
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GERDA - Phase I finished

● Exposure 21.6 kg x year

● Background: (11 ± 2) x 10-3 cts/(keV kg year) 

● T
1/2

 > 2.1 x 1025 years (90% CL)

GERDA-Phase II, comissioned in Dec 2015

● 30 new Broad Energy Ge (BEGe) detectors

● Active mass 35.8 kg of enriched Ge

● Background reduction to ~10-3 cts/(keV kg year)

Goal 

Exposure of 100 kg years
Improve limit on T

1/2
 ~ 1026 years

GERDADetector examples & Recent Reults 
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● The EXO, GERDA and  KamLAND-Zen double beta decay detectors have 
essentially ruled out a long-standing claim for observation of the neutrinoless decay 
mode in 76Ge (HdM).

    
● The CUORE Collaboration has brought the world's largest-volume dilution 

refrigerator to base temperature (6mK), a major step towards a ton-scale bolometric 
experiment.

● The MAJORANA DEMONSTRATOR Collaboration has reported record Cu purity 
from its underground electroforming campaign, and expects to achieve the 
ultra-low backgrounds specified. Commissioning runs with more than 10 kg of highly 

   enriched 76Ge are beginning in the SURF laboratory.

● The SNO+ experiment has demonstrated the stable suspension of isotopes in the 
    scintillator Linear Alkyl Benzene, another path toward a ton-scale

Recent Highlights

Detector examples & Recent Reults 
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Isotope Experiment Exposure (kg
year)

Sensitivity
1025 yr

T
1/2

 *1025 yr

90%CL

<m
v
 > (meV)

Ge76 GERDA I 21.6 2.4 >2.1 200-400

Xe136 EXO-200 100 1.9 >1.1 190-450

Xe136 KamlandZen 504 4.9 >11 60-161

Te130 CUORE 19.75 0.29 0.4 270-760

Isotope Experiment Mass [kg]
(Total / FV)

Bckg [counts/y
t] in ROI

FWHM in ROI
[keV]

Ge76 GERDA I 16/13 40 4

Xe136 EXO-200 170/76 130 88

Xe136 KamlandZen 383/88 210 per t(Xe) 400

Te130 CUORE0 32/11 300 5.1

Detector examples & Recent Reults 
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Goal of current and future efforts - test inverted  hierarchy parameter space
with tonne scale experiments

76Ge : 
● Large Scale Ge, O(tonne) HPGE crystals (GERDA & MAJORANA)

82Se : 
● SuperNEMO : Se foils, tracking and calorimeter, 100 kg scale

136Xe : 
● KamLANDZen — 136Xe in scintillator (several upgrades planned)  
● NEXO - Liquid TPC, 5 tonne of 136Xe
● NEXT - High pressure gas TPC, tonne scale  LZ (dark matter),  liquid TPC, 7 tonne

Future “Ton Scale” experiments
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Next generation

Current generation 10-100 cts/yr/ton

0.1-1 cts/yr/ton

BackgroundIsotope Mass

10-100 kg

1-10 ton

Future “Ton Scale” experiments

IH

NH
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Conclusion/Outlook

•  0νββ physics is the most sensitive probe of lepton number
   violation.

● A 0νββ discovery would proof the Majorana or Dirac nature of
neutrinos and indicate physics beyond the Standard Model

•  Halflife limits of 1025-1026 years are currently probed, but no discovery
   claimed yet.

● Scalability of detector technology will push the limits further down.
    New results expected in few years

•  Covering the inverted hierarchy with 10meV sensitivities is within reach

Many thanks to my collegues from the EXO-200 collabaration
who contributed with slides and comments 
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Backup slides
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J.Detwiler

Future “Ton Scale” experiments

Discovery level, inverted hierarchy



  37

Isotope Experiment Mass [kg]
(Total / FV)

Bckg [counts/y
t] in ROI

FWHM in ROI
[keV]

Ge76 GERDA II 35/27 4 4

Ge76 Majorana
demonstrator

30/24 3 4

Xe136 NEXT100 100/80 9 17

Te130 CUORE 600/206 50 5

Te130 SNO+ 2340/160 45 per t (Te) 240

Ongoing upgrades and their projections

Future “Ton Scale” experiments
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Global 0vββ Efforts
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Isotope 0νββ half life Experiment <m> eV

48-Ca > 1.4*1022  (90%CL)
 

ELEGANT-VI  < 7 - 44

76-Ge > 1.9*1025  (90%CL)
 

Heidelberg-Moscow  < 0.35

76-Ge 2.3*1025  (90%CL) Subset of HM coll.  0.32 +/- 0.03

76-Ge > 2.1*1025 (90%CL) GERDA†  < 0.2 – 0.4

82-Se > 2.1*1023 (90%CL)
 

NEMO-3  <1.2 – 3.2

100-Mo > 5.8*1023 (90%CL)
 

NEMO-3  < 0.6 – 2.7

116-Cd > 1.7*1023  (90%CL) Solotvino  < 1.7

130-Te > 2.8*1024 (90%CL)
 

Cuoricino  < 0.41 – 0.98

136-Xe > 1.9*1025 (90%CL)
 

KamLAND-Zen  < 0.12 – 0.25

136-Xe > 1.6×1025 (90%CL) EXO-200  < 0.14 – 0.38

150-Nd > 1.1*1024 (90%CL)
 

NEMO-3  < 0.33-0.62

Global 0vββ Efforts
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with E
i
 = m

i
c2

….

Neutrino oscillations = non-zero 
neutrino mass

v
α
 = mass eigenstates

v
i
 = flavour eigenstates

U = Lepton mixing matrix 

L = Travel distance

P
α → β

 ~  

Neutrino Oscillations
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Super-K: atmospheric v
μ
 oscillation

SNO: solar v
e
  flavor oscillation

K2K: accelerator v
μ
 oscillation

KamLAND: reactor v
e
 disappearance and oscillation

Super-K K2KSNO KamLAND

Neutrino Oscillations
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