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The OLYMPUS Experiment
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The important points:

1 Motivation:

Why the discrepancy calls for a measurement of σe+p/σe−p

2 Experiment:

The advantages OLYMPUS has in making this measurement

3 Analysis:

How to guarantee an accurate result
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Elastic scattering kinematics are fixed

by two parameters.

Experiment Theory
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Elastic scattering kinematics are fixed

by two parameters.
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Elastic scattering kinematics are fixed

by two parameters.
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The two form factor extraction methods disagree.
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The two form factor extraction methods disagree.
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σe+p/σe−p is sensitive to two-photon exchange.

M = + +O(α3)

σ ≈ |M|2 =
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A few percent effect is large enough

to resolve the discrepancy.
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Previous data are inadequate.
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Three new experiments have taken data

in the last few years.

OLYMPUS

CLAS VEPP-3
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Three new experiments have taken data

in the last few years.
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All three probe the relevant,

low ε, high Q2 phase space.
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The OLYMPUS Experiment

60 scientists from 13 institutions in 6 countries

Detector previously used in the BLAST experiment at MIT

Collected data at DESY, Hamburg, Germany
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Advantage I: High luminosity

OLYMPUSe- injection
from DESY

DORIS storage ring

50 m

Alternate e− ↔ e+ daily

Typical current: 50–70 mA

Windowless hydrogen target

2× 1033cm−2s−1

Over 4 fb−1 recorded!
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Advantage II: large acceptance spectrometer

Beam
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Beam
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Advantage II: large acceptance spectrometer
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Advantage II: large acceptance spectrometer

e- beam
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Advantage II: large acceptance spectrometer

e+ beam

37



Advantage III: redundant luminosity monitors

Ways to determine the relative luminosity between e+ and e− running:

1 Slow control system

beam current × target density

accurate to a few percent

2 Forward tracking telescopes

38



Advantage III: redundant luminosity monitors

Ways to determine the relative luminosity between e+ and e− running:

1 Slow control system

beam current × target density

accurate to a few percent

2 Forward tracking telescopes

39



Forward telescopes monitor the elastic ep rate.
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Forward telescopes monitor the elastic ep rate.
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Forward telescopes monitor the elastic ep rate.

e- beam
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Advantage III: redundant luminosity monitors

Ways to determine the relative luminosity between e+ and e− running:

1 Slow control system

beam current × target density

accurate to a few percent

2 Forward tracking telescopes

3 Symmetric Møller/Bhabha Calorimeters
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Calorimeters monitor the elastic ee rate.
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Calorimeters monitor the elastic ee rate.

e- beam

45



The Møller cross section is 60% larger

than the Bhabha cross section.
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A better method: multi-interaction events

e- beam
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A better method: multi-interaction events
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A better method: multi-interaction events

L =
Nmulti × Nbunches

NMøller × σep
+ . . . corrections

This is immune to:

Møller/Bhabha simulation errors

Detector/DAQ inefficiency

Beam position errors

Accuracy better than 0.3%!

49



The important points:
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Differences between e− and e+ running:

Lepton curvature direction

Acceptance (as a function of angle)

Efficiency (as a function of angle)

Radiative corrections

Soft two-photon exchange

Bremsstrahlung

Simulate with Monte Carlo!
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Experimental data and simulated data

are analyzed with the same software.

Simulated
Events

Simulated
Tracks

Experimental
Data

Simulated
Data

Propagation Digitization

Radiative
Generator

Analysis

R2γ =
Nexp.e+p

σsim.e+pLe+p
×
σsim.e−pLe−p
Nexp.
e−p
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Simulating radiative corrections give us freedom

in our elastic selection.
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Elastic events are easy to select.
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After background subtraction, we can form yields.
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We can test our simulation

without biasing the result.

1 Left/right ratio:

RL
RR
≡
(
σexp.

σsim.

)
L

/

(
σexp.

σsim.

)
R

2 Lepton-averaged cross section ratio:

σ̄exp.

σ̄sim.
≡
σexp.e+p + σexp.

e−p

σsim.e+p + σsim.
e−p
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Left/right comparisons can reveal deviations.
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Lepton-averaged cross section

is limited by knowedge of the form factors.
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We exploit redundancy to control our systematics.

Acceptance

−→ Lepton-averaged cross section

−→ Left-right ratio

Luminosity

−→ Two independent monitors

Radiative corrections / form factors

−→ Simulate multiple corrections, form factor models

Tracking efficiency

−→ Two independent track-reconstruction algorithms

Event selection / background subtraction

−→ Multiple independent analyses

Results will be released when we are confident

in all of our systematic checks.
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In summary...

σe+p/σe−p will say if

two-photon exchange causes

the form factor discrepancy.

OLYMPUS has advantages:

Excellent statistics

Large acceptance

Redundant luminosity

monitors

Redundancy helps us guard

against systematics.

Expect results soon.
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Results from VEPP-3, CLAS
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Results from VEPP-3, CLAS
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CLAS results

Figs. 18 and 19 from arXiv:1603.00315v1
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CLAS results
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VEPP-3 results
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VEPP-3 results
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Results from CLAS and VEPP-3
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Back-up Slides

OL MPUS
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Standard radiative corrections neglect hard

two-photon exchange.

Standard corrections Not included
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Multi-interaction analysis results

Luminosity extraction from pile-up
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