University of Adelaide March 5, 2014

Nucleon structure from global QCD analysis of parton distributions*

Wally Melnitchouk

CTEQ-JLab (CJ) collaboration: <u>http://www.jlab.org/CJ</u>
JLab Angular Momentum (JAM) collaboration: <u>http://www.jlab.org/JAM</u>

Outline

Introduction to PDFs

Unpolarised distributions

- \rightarrow new "CJ" global analysis (including high-*x*, low- Q^2 region)
- \rightarrow d/u ratio and nuclear effects (tested in ed QE scattering)
- → implications of PDF uncertainties for high-energy colliders

Spin structure of the nucleon

- \rightarrow new "JAM" global analysis of polarised PDFs
- $\rightarrow x \rightarrow 1$ behavior of polarised to unpolarised ratios $\Delta q/q$

Outlook

Electron-nucleon scattering

 $\blacksquare \quad \text{Inclusive cross section for } eN \to eX$

\rightarrow one-photon exchange approximation

Electron-nucleon scattering

Inclusive cross section for $eN \rightarrow eX$

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{4\alpha^2 E'^2 \cos^2\frac{\theta}{2}}{Q^4} \left(2\tan^2\frac{\theta}{2}\frac{F_1}{M} + \frac{F_2}{\nu}\right)$$

$$e \qquad e' \\ \xrightarrow{\gamma^*} \\ N \qquad X$$

$$\nu = E - E'$$

$$Q^{2} = \vec{q}^{2} - \nu^{2} = 4EE' \sin^{2} \frac{\theta}{2} \quad \left\{ \begin{array}{c} x = \frac{Q^{2}}{2M\nu} \\ Bjorken \ scaling \ variable \end{array} \right\}$$

Structure functions F_1, F_2

 \rightarrow contain all information about structure of nucleon (δ -functions for point-like particles)

Electron-nucleon scattering

Bjorken variable in terms of $Q^2 \& W$: $x = \frac{Q^2}{W^2 - M^2 + Q^2}$

del Al(6)scatter from individual quarks ("partons") in nucleon $= \frac{A_{n}^{(6)}}{C^4} = x \sum_{q} e_q^2 q(x, Q^2) \qquad (q = u, d, s...)$ $F \stackrel{\psi}{\rightarrow} \psi \stackrel{\psi}{\rightarrow} \gamma_{\mu} \psi$ kcattering lq ${ar b} \,\, \gamma_{m \mu} \,\, \psi$ $g \xrightarrow{f} g \xrightarrow{f} q (x,Q^2) = \text{probability to find quark type "q" in nucleon,$ carrying (light-cone) momentum fraction x $\frac{\sqrt{2}}{p} \frac{\sqrt{2}}{p} \frac{\sqrt{2}}{$

6

- Parton model higher twist corrections
 - \rightarrow scattering from *different* quarks in nucleon

"cat's ears" diagram quark-gluon correlations

 \rightarrow gives rise to $1/Q^2$ corrections

$$F_2(x, Q^2) = F_2^{\text{LT}}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

 \rightarrow important at high x and low Q^2

Parton model – target mass corrections

- -> kinematical corrections from derivative operators ~ $Q^2/\nu^2 = 4M^2x^2/Q^2$ (hence "target mass")
- → target mass corrected structure function

$$F_{2}^{\text{TMC}}(x,Q^{2}) = \frac{x^{2}}{\xi^{2}\gamma^{3}}F_{2}^{(0)}(\xi,Q^{2}) + \frac{6M^{2}x^{3}}{Q^{2}\gamma^{4}}\int_{\xi}^{1}du\frac{F_{2}^{(0)}(u,Q^{2})}{u^{2}} + \frac{12M^{4}x^{4}}{Q^{4}\gamma^{5}}\int_{\xi}^{1}dv(v-\xi)\frac{F_{2}^{(0)}(v,Q^{2})}{v^{2}}$$

- $F_2^{(0)}$ = structure function in massless (Bjorken) limit
- new "Nachtmann" scaling variable $\xi = \frac{2x}{1 + \sqrt{1 + 4M^2x^2/O^2}}$

F_2^p structure function data

Lai et al., EPJ C12, 375 (2000)

 \rightarrow describes data over many orders of magnitude in x and Q^2

Parton distribution functions (PDFs)

- **DFs extracted in global QCD analyses** (CTEQ, MSTW, ...) **of structure function data from** e, $\mu \& \nu$ **scattering** (also from lepton-pair & *W*-boson production in hadronic collisions)
 - \rightarrow determined over large range of x and Q^2

$$xf(x, Q_0^2) = Nx^{\alpha}(1-x)^{\beta}(1+\epsilon\sqrt{x}+\eta x)$$

- Provide basic information on structure of QCD bound states
- Needed to understand backgrounds in searches for physics beyond the Standard Model in high-energy colliders e.g. the LHC
 - $\rightarrow Q^2$ evolution feeds low x, high Q^2 from high x, low Q^2

Parton distribution functions (PDFs)

- Most direct connection between quark distributions and models of nucleon structure is via valence quarks
 - \rightarrow most cleanly revealed at x > 0.4

PDFs at large x

At large x, valence u and d distributions extracted from p and n structure functions

$$F_2^p \approx \frac{4}{9}xu_v + \frac{1}{9}xd_v$$
$$F_2^n \approx \frac{4}{9}xd_v + \frac{1}{9}xu_v$$

- *u* quark distribution well determined from *proton* data
- d quark distribution requires *neutron* structure function

$$\rightarrow \quad \frac{d}{u} \approx \frac{4 - F_2^n / F_2^p}{4F_2^n / F_2^p - 1}$$

PDFs at large x

- Ratio of d to u quark distributions particularly sensitive to nonperturbative quark-gluon dynamics in nucleon
 - $d/u \rightarrow 1/2$ SU(6) symmetry
 - $d/u \rightarrow 0$ S = 0 qq dominance
 - $d/u \rightarrow 1/5$ $S_z = 0$ qq dominance (pQCD-inspired)

•
$$d/u \to \frac{4\,\mu_n^2/\mu_p^2 - 1}{4 - \mu_n^2/\mu_p^2}$$

 ≈ 0.42

local quark-hadron duality* ($\mu_{p,n}$ magnetic moments)

* structure function at $x \rightarrow 1$ given by elastic form factor at $Q^2 \rightarrow \infty$

Neutron structure

Absence of free neutron targets

 \rightarrow deuterium (weakly bound state of p and n) used instead

 \rightarrow deuteron model dependence obscures free neutron structure information at large x

 $W^{-} = M^{-} + 2Mv - Q^{-}$ Neutron structure

CJ global analysis of spin-averaged PDFs

A. Accardi, J. Owens, WM E. Christy, C. Keppel, P. Monaghan

"CJ12" PDFs: *PRD* 87, 094012 (2013) <u>http://www.jlab.org/CJ</u>

- Next-to-leading order (NLO) analysis of expanded set of *proton* and *deuterium* data (no heavy nuclei)
 include large-*x*, low-Q² region
- Systematically study effects of $Q^2 \& W$ cuts \rightarrow as low as $Q \sim m_c$ and $W \sim 1.7$ GeV
- Include subleading $1/Q^2$ corrections
 - → target mass corrections & dynamical higher twists
- Correct for nuclear effects in deuteron (binding + off-shell)
 most global analyses assume *free* nucleons

						χ^2	
CJ database		Experiment	Ref.	# points	CJ12min	CJ12mid	CJ12max
	DIS F_2	BCDMS (p)	[13]	351	434	436	437
		BCDMS (d)	[13]	254	294	297	302
		NMC (p)	14	275	434	432	430
		NMC (d/p)	15	189	179	177	182
		SLAC (p)	16	565	456	455	456
		SLAC (d)	[16]	582	394	388	396
		JLab (p)	17	136	170	169	170
		JLab(d)	17	136	124	125	126
	DIS σ	HERA (NC e^-)	[18]	145	117	117	118
		HERA (NC e^+)	18	384	595	596	596
		HERA (CC e^-)	18	34	19	19	19
		HERA (CC e^+)	18	34	32	32	32
	Drell-Yan	E866 (p)	[19]	184	220	221	221
		E866 (d)	[19]	191	297	307	306
	W asymmetry	CDF 1998 (ℓ)	20	11	14	16	18
		CDF 2005 (ℓ)	21	11	11	11	10
		DØ 2008 (ℓ)	22	10	4	4	4
		DØ 2008 (e)	[23]	12	40	36	34
		CDF 2009 (W)	24	13	20	25	41
	Z rapidity	CDF(Z)	25	28	29	27	27
~ 1.000 data points		$D\emptyset(Z)$	26	28	16	16	16
~ 4,000 data points	jet	CDF run 1	27	33	52	52	52
over large range		CDF run 2	28	72	14	14	14
Over large range		DØ run 1	29	90	21	20	19
\mathbf{f} and \mathbf{O}^2		DØ run 2	30	90	19	19	20
of x and Q^-	γ +jet	DØ 1	31	16	6	6	6
		DØ 2	31	16	13	13	12
		DØ 3	31	12	17	17	17
		DØ 4	31	12	17	10	17
		TOTAL		3958	4059	4055	4096
	TO	IAL + norm			4075	4074	4117

Kinematic cuts

→ factor 2 increase in DIS data from cut0 → cut3 compared to most global analyses

Kinematic cuts

Larger database with weaker cuts leads to significantly reduced errors, especially at large x

→ up to 40-60% error reduction when cuts extended into resonance region

Kinematic cuts

Fits stable with respect to Q^2 and W cut reduction, as long as subleading $1/Q^2$ corrections included

Finite- Q^2 corrections

Accardi et al., PRD 81, 034016 (2010)

- interplay between TMCs and higher twist
 stable LT when both TMCs and HTs included
- \rightarrow growing importance of HTs as large x

Nuclear corrections

Nuclear structure function at $x \gg 0$ dominated by incoherent scattering from individual nucleons

- \rightarrow *y* = light-cone momentum fraction of *d* carried by *N*
- -> at finite Q^2 , smearing function depends also on parameter $\gamma = |{\bf q}|/q_0 = \sqrt{1+4M^2x^2/Q^2}$

Nuclear corrections

Smearing function in the deuteron computed in "weak binding approximation" – expand in powers of \vec{p}^2/M^2

 \rightarrow effectively more smearing for larger x and lower Q^2

 \rightarrow greater wave function dependence at large y (\rightarrow large x)

Nuclear corrections

flexible parametrization for $x \to 1$ behavior

$$d \rightarrow d + a x^b u$$

• allows finite, nonzero x = 1 limit

 $d/u \rightarrow 0.22$ $\pm 0.20 \,(\mathrm{PDF})$ $\pm 0.10 \,(\mathrm{nucl})$

CJ12min: WJC-1 + mild off-shell (0.3% nucleon swelling)
 CJ12mid: AV18 + medium off-shell (1.2% swelling)
 CJ12max: CD-Bonn + large off-shell (2.1% swelling)

$$\sigma_{(\mathrm{QE})} \sim f_{N/d}(y,\gamma) \\ \times G_N(Q^2) \\ \uparrow \\ \text{elastic } eN \\ \text{form factors}$$

Ethier, Doshi, Malace, WM arXiv:1402.3910

→ importance of
correct
$$Q^2$$
 dependence
in $f(y, \gamma)$

Ethier, Doshi, Malace, WM arXiv:1402.3910

Comparison with other PDFs fits

increase in PDF error from more realistic treatment of nuclear corrections

 \rightarrow reduction of error from larger database

lepton pair production in *pp* collisions

Large-x PDF uncertainties affect observables at large rapidity y, with

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \longrightarrow x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$$

e.g. W^{\pm} asymmetry

$$A_W(y) = \frac{\sigma_{W^+} - \sigma_{W^-}}{\sigma_{W^+} + \sigma_{W^-}}$$

$$\approx \frac{d(x_2)/u(x_2) - d(x_1)/u(x_1)}{d(x_2)/u(x_2) + d(x_1)/u(x_1)} \qquad [x_1 \gg x_2]$$

where

$$\sigma_{W^+} \equiv \frac{d\sigma}{dy}(pp \to W^+X) = \frac{2\pi G_F}{3\sqrt{2}}x_1x_2\left(u(x_1)\bar{d}(x_2) + \cdots\right)$$

Large-x PDF uncertainties affect observables at large rapidity y, with

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \longrightarrow \qquad x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$$

e.g.
$$W^{\pm}$$
 asymmetry

Uncertainty in *d*-quark feeds into larger uncertainty in *gluon* at high *x* (relevant for LHC physics)

heavy W'^- production

 \rightarrow observation of new physics signals requires accurate determination of QCD backgrounds \rightarrow depend on PDFs!

JLab 12 GeV plans

- Several planned experiments at JLab with 12 GeV will measure d/u to $x \sim 0.85$ with minimal nuclear corrections
 - → SIDIS from D with slow backward proton ("BoNuS"); inclusive ³He / ³H ratio; and PVDIS from proton

Accardi et al., PRD 84, 014008 (2011)

Spin-dependent PDFs

P. Jimenez-Delgado, A. Accardi, WM H. Avakian, B. Sawatzky, ...

"JAM" PDFs: arXiv:1310.3734, to appear PRD (2014) <u>http://www.jlab.org/JAM</u>

Nucleon spin structure

$$\Delta G \ll 1$$
 (DIS + pp)
 $L_{q,g} = ?$ (GPDs)

 \rightarrow fewer data *cf*. unpolarised

Nucleon spin structure

 $\Delta q^+ \equiv \Delta q + \Delta \bar{q}$

- Global PDF analyses performed by several groups
 - → focus on small-*x* region (sum rules)
- Data from many experiments at JLab recently collected at low Q² and W
 - → need for synthesis of results (current & future) from Halls A, B & C, including finite-Q² & nuclear corrections
 - \rightarrow JAM global analysis

Nucleon spin structure

Recent RHIC pp data claimed to imply large gluon polarisation

important to confirm claim through independent global analysis

JAM database

 Complete collection of world's inclusive polarised
 DIS data (interactive database at <u>http://www.jlab.org/JAM</u>)

 $Q^2 > 1 \text{ GeV}^2, \ W^2 > 3.5 \text{ GeV}^2$

 Fit experimental asymmetries (longitudinal & transverse) rather than derived g₁ and g₂ structure functions

$$g_1(x,Q^2) = \frac{1}{2} \sum_q e_q^2 \ \Delta q(x,Q^2)$$

several high-statistics experiments still _____ being analysed

experiment	reference	observable	target	$N_{\rm data}$	$\chi^2({\rm LT})/N_{\rm dat}$	$\chi^2({\rm JAM})/N_{\rm dat}$
EMC	[1]	A_1	р	10	0.42	0.39
SMC	[30]	A_1	p	12	0.36	0.36
	[30]	A_1	d	12	1.59	1.66
	[31]	A_1	p	8	1.37	1.35
	[31]	A_1	d	8	0.54	0.56
COMPASS	[32]	A_1	p	15	0.95	0.97
	[33]	A_1	d	15	0.57	0.51
SLAC E80/E130	[34]	A	p	23	0.52	0.54
SLAC E142	[35]	A_1	³ He	8	0.58	0.70
	[35]	A_2	3 He	8	0.70	0.70
SLAC E143	[36]	A	p	85	0.85	0.81
	[36]	A_{\perp}	р	48	0.95	0.91
	[36]	A	d	85	1.05	0.85
	[36]	A_{\perp}	d	48	0.92	0.91
SLAC E154	[37]	A	³ He	18	0.43	0.42
	[37]	A_{\perp}	$^{3}\mathrm{He}$	18	1.00	1.00
SLAC E155	[38]	A	p	73	1.00	0.92
	[38, 39]	A_{\perp}	p	66	1.00	0.96
	[40]	A	d	73	0.98	0.97
	[39, 40]	A_{\perp}	d	66	1.51	1.49
SLAC E155x	[41]	\tilde{A}_{\perp}	p	117	2.17	1.64
	[41]	\tilde{A}_{\perp}	d	117	0.90	0.84
HERMES	[42]	A	p	37	0.38	0.39
	[42]	A_{\parallel}	d	37	0.86	0.85
	[43]	A_1	"n"	9	0.29	0.30
	[44]	A_2	p	20	1.07	1.16
JLab E99-117	[45]	A	$^{3}\mathrm{He}$	3	0.62	0.06
	[45]	A_{\perp}	$^{3}\mathrm{He}$	3	1.08	0.87
COMPASS	[49]	$\Delta g/g$	p	1	5.27	2.71
total				1043	1.07	0.98
JLab E97-103*	[46]	- A	$^{3}\mathrm{He}$	2		-
	[46]	A_{\perp}	$^{3}\mathrm{He}$	2		
JLab EG1b*	[48]	A_1	р	766	-	_
(prelim.)	[48]	A_1	d	767	_	

JAM database

 Complete collection of world's inclusive polarised
 DIS data (interactive database at http://www.jlab.org/JAM)

 $Q^2 > 1 \text{ GeV}^2, \quad W^2 > 3.5 \text{ GeV}^2$

 Fit experimental asymmetries (longitudinal & transverse) rather than derived g₁ and g₂ structure functions

$$A_{\parallel} = \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\uparrow \Uparrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\uparrow \Uparrow}} = D(A_1 + \eta A_2)$$
$$A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\uparrow \Leftarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\uparrow \Leftarrow}} = d(A_2 - \xi A_1)$$
$$A_1 = \frac{(g_1 - \gamma^2 g_2)}{F_1}, \quad A_2 = \gamma \frac{(g_1 + g_2)}{F_1}$$

experiment	reference	observable	target	$N_{\rm data}$	$\chi^2({\rm LT})/N_{\rm dat}$	$\chi^2({\rm JAM})/N_{\rm dat}$
EMC	[1]	A_1	р	10	0.42	0.39
SMC	[30]	A_1	p	12	0.36	0.36
	[30]	A_1	d	12	1.59	1.66
	[31]	A_1	p	8	1.37	1.35
	[31]	A_1	d	8	0.54	0.56
COMPASS	[32]	A_1	p	15	0.95	0.97
	[33]	A_1	d	15	0.57	0.51
SLAC E80/E130	[34]	A_{\parallel}	p	23	0.52	0.54
SLAC E142	[35]	A_1	³ He	8	0.58	0.70
	[35]	A_2	³ He	8	0.70	0.70
SLAC E143	[36]	A	p	85	0.85	0.81
	[36]	A_{\perp}	p	48	0.95	0.91
	[36]	A	d	85	1.05	0.85
	[36]	A_{\perp}	d	48	0.92	0.91
SLAC E154	[37]	A	³ He	18	0.43	0.42
	[37]	A_{\perp}	³ He	18	1.00	1.00
SLAC E155	[38]	A	p	73	1.00	0.92
	[38, 39]	A_{\perp}	p	66	1.00	0.96
	[40]	A_{\parallel}	d	73	0.98	0.97
	[39, 40]	A_{\perp}	d	66	1.51	1.49
SLAC E155x	[41]	\tilde{A}_{\perp}	p	117	2.17	1.64
	[41]	\tilde{A}_{\perp}	d	117	0.90	0.84
HERMES	[42]	A	p	37	0.38	0.39
	[42]	A_{\parallel}	d	37	0.86	0.85
	[43]	A_1	"n"	9	0.29	0.30
	[44]	A_2	p	20	1.07	1.16
JLab E99-117	[45]	A	³ He	3	0.62	0.06
	[45]	A_{\perp}	³ He	3	1.08	0.87
COMPASS	[49]	$\Delta g/g$	р	1	5.27	2.71
total				1043	1.07	0.98
JLab E97-103*	[46]	A	³ He	2		
	[46]	A_{\perp}	³ He	2		
JLab EG1b*	[48]	A_1	p	766	-	_
(prelim.)	[48]	A_1	d	767	_	

JAM PDFs

- \rightarrow significantly larger Δd at $x \gtrsim 0.3$
- → greatest effect on polarised PDFs from higher twist corrections

JAM PDFs

 \rightarrow important $\tau = 3$ contributions to proton g_1, g_2 and $\tau = 4$ contributions to neutron g_1

JAM PDFs

- → PDFs relatively stable w.r.t. cuts in Q^2 and W (50% of all data points in $Q^2 < 2 \text{ GeV}^2$ region)
- → significant reduction in ∆d with strong W cut (to avoid HT corrections) – cf. "NNPDF" analysis

PDFs at large x

Ratio of polarised to unpolarised PDFs even more sensitive to nonperturbative quark-gluon dynamics in nucleon

- $\Delta u/u \rightarrow 2/3$ SU(6) symmetry $\Delta d/d \rightarrow -1/3$
- $\Delta u/u \to 1$ $\Delta d/d \to -1/3$ $S = 0 \ qq$ dominance
- $\Delta u/u \rightarrow 1$ $S_z = 0$ qq dominance (pQCD) $\Delta d/d \rightarrow 1$ <u>or</u> local duality

PDFs at large x

- Current data cannot discriminate between different $x \rightarrow 1$ behaviours
- Impose $x \to 1$ pQCD constraint on PDFs "by hand"
 - \rightarrow "JAM+" fit

Earlier analysis suggested need for additional nonzero OAM (L_7 =1) component in nucleon wave function

 \rightarrow leading $(1-x)^3$ behaviour from $L_7 = 0$ component

→ $L_z = 1$ gives additional $\log^2(1-x)$ enhancement of q^{\downarrow} $q^{\downarrow} \sim (1-x)^5 \log^2(1-x)$

Avakian, Brodsky, Deur, Yuan PRL **99**, 082001 (2007)

Earlier analysis suggested need for additional nonzero OAM (L_z =1) component in nucleon wave function

Avakian, Brodsky, Deur, Yuan PRL **99**, 082001 (2007)

Earlier analysis suggested need for additional nonzero OAM (L_z =1) component in nucleon wave function

 \rightarrow $L_7 = 1$ term needed to delay Δd turnover until larger x

Avakian, Brodsky, Deur, Yuan PRL **99**, 082001 (2007)

■ Global JAM & JAM+ fits can accommodate data without need for additional $L_z = 1$ terms

→ "OAM" and "OAM+" fits use $x\Delta f = Nx^{\alpha}(1-x)^{\beta} + N'x^{\alpha}(1-x)^{5}\log^{2}(1-x)$ → can also accommodate data, with similar overall χ^{2}

JLab 12 GeV plans

Several upcoming experiments at JLab will measure $A_1(p, d, {}^3\mathrm{He})$ up to $x \sim 0.8$

JLab 12 GeV plans

Several upcoming experiments at JLab will measure $A_1(p, d, {}^3\mathrm{He})$ up to $x \sim 0.8$

will significantly reduce PDF uncertainties at large x

Outlook

- Ongoing "CJ14" analysis includes new cross section data from JLab & collider experiments
 - \rightarrow allow for different HTs for F_2, F_L & isospin dependence
 - \rightarrow incorporate LHC (*W*, *Z*, jet production), PVDIS data
 - \rightarrow next release will include parametrisations of electroweak structure functions (down to low Q^2) in addition to PDFs
- Next phase of JAM analysis will study polarisation of sea quarks and gluons
 - \rightarrow semi-inclusive DIS for flavour/antiflavour separation
 - → polarised pp cross sections (inclusive jet & pion production) sensitive to Δg

The End