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Introduction

CTEQ/Jefferson Lab (CJ) Collaboration - Alberto Accardi, Eric Christy,

Cynthia Keppel, Simona Malace, Wally Melnitchouk, Peter Monaghan,

Jorge Morf́ın, JFO, and Lingyan Zhu

Goals:

• Overall goal - Improve the precision of the d PDF

• Extend PDF fits to larger values of x and lower values of Q

• Wealth of data from older SLAC experiments and newer JLAB

experiments

• Study effects of different target mass correction methods

• Explore role of higher twist contributions

• Quantify the uncertainty due to nuclear corrections for deuteron

targets

• Study the parametrization dependence of the results



Motivation

• Traditional global fits focus on leading twist PDFs convoluted with

hard scattering partonic cross sections

• For DIS require cuts on Q and W to avoid regions with contributions

from higher twist terms and target mass corrections

• W 2 = m2 + Q2( 1

x
− 1) limits x ≤ Q2

W 2

min
−m2+Q2

• Need large Q2 in order to get near x ≈ 1 with W ≥ Wmin

• Lower energy fixed target experiments - run out of Q

• Higher energy experiments - run out of statistics

• Typically use Q > 2 GeV and W > 3.5 GeV

• When applied to existing DIS data sets this results in x . .7



• Red = JLAB, Blue = SLAC, Green = BCDMS and NMC

• Four boundaries correspond to four sets of (Q2, W 2) cuts: (4, 12.25),

(3, 8), (2, 4), and (1.69, 3) GeV2

• Top boundary is the one used in previous fits

• Lower boundary is the one currently used



Why go to larger x and smaller Q values?

• Existing PDFs are largely unconstrained, parametrization-dependent

extrapolations beyond x ≈ 0.7

• Large-x region is important for studies of massive particle production

at forward rapidity values since

x1,2 =
M√

s
exp(±y)

• Intrinsic interest in the behavior of d/u as x → 1 in order to probe the

structure of the proton



Question - how does one constrain PDFs in regions which are excluded by

kinematic cuts?

• Use momentum sum rule and quantum number sum rules for PDFs

• Rely on evolution equations - high x, low Q feeds lower x, higher Q

• Both provide indirect constraints on the PDFs as one integrates over a

larger region than is covered by data

But, one would also like a direct comparison - requires a lowering of the

cuts on W and Q.

• Target mass corrections and higher twist contributions will become

important

• Fermi motion smearing for deuterium targets becomes important at

high x



DIS Target Mass Corrections

Several different methods available

• Standard Georgi-Politzer method

• Collinear Factorization

- Jianwei Qiu and Alberto Accardi - arXiv:0805.1496 [hep-ph], JHEP

0807:090, 2008.

- See also Jianwei’s talk at the 2005 JLAB meeting/workshop on the

CTEQ web page

• Naive TMC - to be defined below



Some comments on TMCs

• Nachtmann variable: ξ = 2xB

1+
√

1+4x2

B
m2

N
/Q2

- In the standard GP formalism ξ < 1 when xB = 1

- Leads to non-zero structure functions at xB ≥ 1

• Collinear factorization gives structure functions as a convolution which

respects the kinematic boundaries

FT,L(xB , Q2, m2
N ) =

Z ξ/xB

ξ

dx

x
hf |T,L(ξ/xB, Q2)φf (x, Q2)

where hf is a parton-level helicity structure function and φ is the respective

PDF

• Naive: FT,L(xB, Q2,m2
n) = FT,L(ξ,Q2)

• For a recent review of the phenomenology of these different TMCs, see

L.T. Brady, A. Accardi, T.J. Hobbs, and W. Melnitchouk, arXiv:1108.4734,

Phys. Rev. D84, 074008 (2011).



Higher Twist parametrization

Parametrize the higher twist contribution by a multiplicative factor

F2(data) = F2(TMC)(1 + C(x)/Q2)

where

C(x) = a xb(1 + c x + d x2)

Comments:

• Parametrization is sufficiently flexible to give a good fit to the data

• Parameter d not really needed since for x near 1 there is not a lot of

difference between x and x2

• Differences in higher twist contributions for p or d can be included

if/when required by data



Nuclear Corrections

• Fermi motion smearing done using the Weak Binding Approximation

(WBA)

• Various choices of wavefunctions explored
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Offshell Corrections

• Start with a parametrization due to Kulagin and Petti which is fitted

to data for a range of heavy nuclei

• Parameters were adjusted (Wally Melnitchouk) to provide a range of

corrections representative of the average offshellness of nucleons in a

deuteron
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• Easy way to think about the effects of the nuclear corrections on the

PDFs

• The deuterium data are divided by this ratio, yielding effectively the

sum of neutron and proton data

• When the ratio is less than one the data are enhanced and the d PDF

will increase

• Conversely, the d PDF will be reduced when the ratio is greater than

one



Previous analysis (Phys. Rev. D81:034016, 2010) showed the following

• Good fits could be obtained using the lower Q and W cuts on the DIS

data

• Different target mass correction prescriptions gave equivalent fits as

long as a simple parametrization of higher twist contributions was

added

• Leading twist PDF was stable as the TMC prescription was varied

Residual questions:

• How do the results depend on the models used for the nuclear

corrections for DIS data from deuterium targets (deuteron

wavefunction, offshell corrections)?

• How do the results depend on the parametrization used for the d PDF?



Information on the d PDF

DIS

• F p
2 (x, Q2) ∼ 4u + d

• F d
2 (x, Q2) ∼ 5(u + d), but requires nuclear corrections

Lepton Pair Production

• x1x2 = M2

s
and xF = x1 − x2

• Can get to large x1 if high-xF data are available

• E-866 reaches to x ≈ .8

• σpp ∼ u(x2)[4u(x1) + d(x1)d(x2)/u(x2)]

• σpn ∼ d(x2)[4u(x1) + d(x1)u(x2)/d(x2)]

• At large xF , x1 ≫ x2

• To the extent that u(x2) ≃ d(x2), which is roughly satisfied for small x2, one

is still sensitive to 4u + d



W asymmetry

• x1,2 = MW√
s

e±y

• W asymmetry directly sensitive to large x d/u at large y

• Effect is reduced if decay lepton asymmetry is used

• Newer data reach to x ≈ .8, but the last bin is wide and the central

value corresponds to x ≈ .57

Vector boson production

• W and Z production are sensitive to different linear combinations of

PDFs than for Drell-Yan pairs

• Potential constraints from data at high values of rapidity



Jet Data

• All parton pairs contribute, weighted by their respective subprocess

cross sections

• Leads to an anticorrelation between the d PDF and the u and g PDFs

Neutrino Data

• Sensitive to different linear combinations of PDFs than charged lepton

DIS, thereby giving flavor differentiation

• Dimuon data allow for the study of s − s

• But, neutrino data require the use of nuclear corrections for heavy

targets

• Have not included neutrino data since we only want to study the

effects of deuterium corrections at this time



Fitting Package

We are using my NLO DGLAP fitting package which I have continued to

update and extend

• Can fit DIS, Drell-Yan, W lepton asymmetry, jets, and γ + jet

• W lepton asymmetry routine allows for a single pT cut, but a

generalization to allow for multiple pT cuts has been developed

• Added PDF errors (Hessian method)

• Multiple TMC and HT terms added (Alberto Accardi)

• Some correlated errors added

• Options for nuclear corrections added (Wally Melnitchouk, Alberto

Accardi)



Data Sets

• BCDMS, SLAC, NMC, H1, Zeus, and JLAB DIS data

• E-605 and E-866 lepton pair data

• CDF and D0 jet data

• W asymmetry and W-lepton asymmetry data

• DØ γ + jet data

• Data sets similar to those used in CTEQ6.1 except CCFR removed,

E-866 added, DØ γ + jet added, and some new W asymmetry data

added



Results

• Summarize results by showing d/u ratios

- The u PDF is already well constrained

- The different nuclear corrections have the largest effect on the d

PDF

- Basically, the d PDF shifts to accommodate whatever nuclear

model is used and the other PDFs adjust to compensate for the

shift

• Consider first a traditional parametrization where the d PDF vanishes

as x → 1

• Then, compare to a parametrization where d → d + cu uxbu so that

d/u → cu in the limit that x = 1

• For clarity, the bands denote the PDF uncertainty resulting from the

experimental errors with ∆χ = 1



Sample results obtained using the AV18 wavefunction

Either parametrization gives good fits, with a very slight chi square

preference existing for the right-hand plots (d/u → c at x = 1)



Left-hand plot shows the wavefunction dependence with a fixed offshell

model while the right-hand plot shows the full effect of varying both the

wavefunction and the offshell model



Compare the PDFs resulting from the upper and lower extremes of the d/u

ratios shown on the previous slide

• Center panels show the d PDFs for the upper and lower extremes

• A very small shift (few percent) in the u PDF compensates

• Primarily because the DIS and Drell Yan data are sensitive to

4u + d = u(4 + d/u) in a region where d/u is already small

• Gluon PDF compensates the change in the d PDF for the jet data

• Uncertainty in the d PDF due to the variation of the nuclear

corrections feeds into increased uncertainty in the large-x gluon PDF



The figure below shows the result of removing the deuterium DIS data

from the fit.

For a fixed choice of the nuclear models the uncertainty on the d PDF is

decreased when the deuterium data are added



Selected Collider Results
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• Figures by L. Brady from a paper in preparation showing the

variations in vector boson production predictions at collider energies

(L. Brady, A. Accardi, W. Melnitchouk, and JFO)

• Variations in the nuclear corrections for deuterium cause the fitted d

PDF to change, especially at large values of x

• This causes variations in the W asymmetry at large values of rapidity



W -Lepton Asymmetry at the LHC
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• Plot made by L. Brady using MCFM with CJ PDFs

• Good agreement observed with CMS and LHCb data

• Nuclear variations not as pronounced since the V-A nature of the W

decay reduces the reach in x for a given value of rapidity

• Nice cross check on the CJ PDFs



Next Steps

• Update data sets

- Have added joint HERA data sets

- Have added CDF and DØ Z rapidity distributions

- Have added Run II CDF and DØ jet data

• Quantify the nuclear uncertainties

- Currently have included a wide range of wavefunctions and off-shell

corrections

- But, the off-shell correction parameters depend, in principle on the

wavefunction

- Choose three representative wavefunctions and match the off-shell

model parameters to them



Parametrization dependence

• Conventional parametrizations of PDFs are of the form

f(x) = a0x
a1(1 − x)a2P (x)

where P (x) is often, though not always, a polynomial in x

• Different choices for P can lead to a wide range of extrapolations in

regions not constrained by data

• Comparisons of different choices are in progress

• There is also the choice of the d parametrization as x → 1



PDF Errors

• Software is being written to generate PDF error eigenvector parameter

sets using the Hessian technique

• Will produce corresponding error PDF sets in tabular form

• Goal is to produce NLO PDF sets with errors for each of the three

choices of nuclear corrections

• Aim to distribute sets in table form through LHAPDF, for example



Nuclear Corrections - what can be done?

• How can one resolve the dilemma posed by the fact that the d PDF simply

adjusts to whatever nuclear model is used while the other PDFs are

anticorrelated and vary in order to maintain good fits to the non-deuterium

data?

• Need new data which constrain the d PDF but which are not sensitive to

nuclear corrections

• Examples include the BONUS, MARATHON, and PVDIS experiments at

Jefferson Lab

• Could also consider experiments done with proton targets such as ν and ν p

DIS data, perhaps from the Minerνa experiment. These will directly

constrain the d/u ratio

• Another example - finer binning on W asymmetry data at high values of

rapidity in order to get to large x values

If we knew the d/u ratio, then we could turn the problem around and use

our fits to select the best model for the nuclear corrections



Summary and Conclusions

• Nuclear corrections - Fermi smearing and offshell corrections - have

significant effects on the behavior of d PDF when it is constrained by

deuterium DIS data

• Good descriptions of the data are easily obtained and the d PDF varies

significantly, depending on the nuclear model choice

• Other PDFs are anticorrelated with the d PDF (mostly the u and gluon

PDFs) so that the fits to all other data sets are essentially independent of

the nuclear corrections

• To further constrain the d PDF we need data which are sensitive to the d

PDF while not being sensitive to nuclear corrections. This includes

experiments such as MARATHON, BONUS, and PVDIS. It also includes

additional observables taken on proton targets.

• Information on the d PDF obtained via methods which do not rely on

nuclear corrections will then place constraints on nuclear correction models


